УДК 541.135+544.17+547.1
DOI: https://doi.org/10.52540/2074-9457.2021.1.65
Скачать статью
Д. В. Казак1, Е. А. Дикусар1, С. Г. Стёпин2
НОВЫЕ ПОДХОДЫ К СИНТЕЗУ ГЕТЕРОЦИКЛИЧЕСКИХ ПРОИЗВОДНЫХ ПИРИДИНКАРБОНОВЫХ КИСЛОТ, АКРИДИНА И ПИРАЗОЛОНА
1 Институт физико-органической химии НАН Беларуси,
г. Минск, Республика Беларусь
2 Витебский государственный ордена Дружбы народов медицинский университет,
г. Витебск, Республика Беларусь
Актуальной задачей современной фармацевтической химии является разработка новых методов синтеза, изучение химических свойств, а также поиск биологически активных соединений среди производных никотиновой и изоникотиновой кислот. В обзоре рассмотрены синтетические подходы к получению сложных эфиров карбоновых кислот, в том числе никотиновой и изоникотиновой кислот, приведены примеры биологической активности никотиновой и изоникотиновой кислот и их производных. Обсуждены методы синтеза азометинов, замещенных акридинов и пиразолонов, приведены примеры их биологической активности. Представлена перспективная концепция синтеза новых потенциальных лекарственных средств на основе гетероциклических производных никотиновой и изоникотиновой кислот. Рассмотренные в данном обзоре методы функционализации органических соединений применительно к синтезу гетероциклических производных никотиновой и изоникотиновой кислот позволяют получать новые перспективные соединения, потенциально обладающие антибактериальной, противовирусной, фунгицидной и противоопухолевой активностью.
Ключевые слова:
никотиновая кислота, изоникотиновая кислота, хлорангидриды, сложные эфиры, азометины, конденсация, замещенные акридины и хинолины, пиразолон, биологическая активность.
SUMMARY
D. V. Kazak, E. A. Dikusar, S. G. Stepin
NEW APPROACHES TO SYNTHESIS OF HETEROCYCLIC DERIVATIVES OF PYRIDINE CARBOXYLIC ACIDS, ACRIDINE AND PYRAZOLONE
Minsk, The Republic of Belarus
Vitebsk, The Republic of Belarus
The urgent task of modern pharmaceutical chemistry is the development of new methods of synthesis, the study of chemical properties, as well as the search for biologically active compounds among derivatives of nicotinic and isonicotinic acids. The review examines synthetic approaches to the production of carboxylic acid esters including nicotinic and isonicotinic acids, gives examples of the biological activity of nicotinic and isonicotinic acids and their derivatives. The methods for the synthesis of azomethines, substituted acridines and pyrazolones are discussed, examples of their biological activity are given. A promising concept for the synthesis of new potential drugs based on heterocyclic derivatives of nicotinic and isonicotinic acids is presented. The methods of functionalization of organic compounds considered in this review with regard to the synthesis of heterocyclic derivatives of nicotinic and isonicotinic acids make it possible to obtain new promising compounds potentially having antibacterial, antiviral, fungicidal and antitumor activity.
Keywords:
nicotinic acid, izonicotinic acid, acid chlorides, esters, azomethins, condensation, substituted acridines and quinolines, pirazolones, biological activity.
ЛИТЕРАТУРА:
1. Boatman, P. D. Nicotinic Acid Receptor Agonists / P.D. Boatman, J.G. Richman, G.Semple // J.Med. Chem. – 2008. – Vol. 51, N 24. – P. 7653–7662.
2. Трухачёва, Е. П. Значение никотиновой кислоты в современной кардиологии / Е.П.Трухачёва, М.В. Ежов // Рациональная фармакотерапия в кардиологии. – 2011. – Т. 7, №3. – С.365–370.
3. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications / N.Sinthpoom [et al.] // Eur. Food Res. Tech. – 2014. – Vol. 240, N 1. – P. 1–17.
4. Nicotinic Acid / B. G. Brown [et al.] // Clinical Lipidology: A Companion to Braunwald's Heart Disease / edited by C. M. Ballantyne. – [S. L.]: Elsevier Inc., 2009. – Chap. 25 – P. 298–314.
5. Nicotinic acid: pharmacological effects and mechanisms of action / A. Gille [et al.] // Ann. Rev. Pharm. Toxicol. – 2008. – Vol. 48, N 1. – P. 79–106.
6. Rader, J. I. Hepatic toxicity of unmodified and time-release preparations of niancin / J.I.Rader, R.J. Calvert, J. N. Hathcock // Am. J. Med. – 1992. – N 1. – P. 77–81.
7. Солдатенков, А. Т. Основы органической химии лекарственных веществ / А.Т.Солдатенков, Н. М. Колядина, И. В. Шендрик. – Москва: Химия. – 2001. – 192 с.
8. Синтез и цереброваскулярная противоишемическая активность новых производных 5-гидроксиадамантан-2-она / Е.В.Курза [и др.] // Хим. фармацевт. журн. – 2018. – Т. 52, №2. – С.3–7.
9. Синтез и анксиолитическая активность сложных эфиров и амидов 4-амино-2,6-диметилникотиновых кислот / Т. А. Воронина [и др.] // Хим. фармацевт. журн. – 2001. – Т. 35, №11.– С. 8–10.
10. Лукевиц, Э. Производные пиридина в арсенале лекарственных средств (К 150-летию химии пиридина) / Э.Лукевиц // Химия гетероциклических соединений. – 1995, № 6. – С. 723–734.
11. Ковганко, Н. В. Синтез 2-хлорникотинатов, никотината и пиразиноата 7-замещенных 19-нортестостеронов / Н. В. Ковганко, И. В. Долгопалец, Ю. Г. Чернов // Весцi нац. акад. навук Беларусi. Сер. хiм. навук. – 2018. – Т. 54, № 1. – С. 80–86.
12. Копелевич, В.М. Некоторые подходы к направленному поиску лекарств на основе никотиновой кислоты (обзор) / В. М. Копелевич, В. И. Гунар // Хим. фармацевт. журн. – 1999. – Т.33, № 4. – С. 6–16.
13. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications / A. Kareem [et al.] // J. Photochem. Photobiol. B: Biology. – 2016. – Vol. 160. – P. 163–171.
14. Otera, J. Esterification: Methods, Reactions and Applications / J. Otera, J. Nishikido. – 2nd ed. – Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. – 620 p.
15. Siengalewicz, P. Synthesis of Esters and Lactones / P. Siengalewicz, J. Mulzer, U. Rinner // Comprehensive Organic Synthesic. 2nd ed. – 2014. – Vol. 6. – P. 355–410.
16. Carboxylic Acid Derivatives Synthesis // Name Reactions for Functional Group Transformations / edited by J. J. Li, E. J. Corey. – NJ, USA: John Wiley & Sons. Inc, 2007. – Chap. 6.
17. Mitsunobu, O. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts / O. Mitsunobu, M. Yamada // Bull. Chem. Soc. Japan. – 1967. – Vol. 40, N10.– P.2380–2382.
18. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents / D. Hirose [et al.] // Chem. Sci. – 2016. – Vol. 7. – P. 5148–5159.
19. Hirose, D. Recyclable Mitsunobu reagents: Catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen / D. Hirose, T. Taniguchi, H. Ishibashi // Angew. Chem. Int. Ed. Engl. – 2013. – Vol. 52, N 17. – P. 4613–4617.
20. But, T.Y.S. Organocatalytic Mitsunobu reactions / T. Y. S. But, P. H. Toy // J. Am. Chem. Soc. – 2006. – Vol. 128, N 30. – P. 9636–9637.
21. Manabe, K. Dehydratatio reactions in water. Surfactant-type Bronsted acid-catalyzed direct esterification of carboxylic acids with alcohols in an emulsion system/ K. Manabe, X. Sun, S.Kabayashi / J. Am. Chem. Soc. – 2001. – Vol. 123, N 41. – P. 10101–10102.
22. Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether and dithioacetal formation in water /K. Manabe [et al.] // J. Am. Chem. Soc. – 2002.– Vol. 124, N40.– P. 11971–11978.
23. The esterification in cyclohexane/DBSA/water microemulsion system / L. Jing [et al.] // Colloids and Surfaces A: Physicochem. Eng. Asp. – 2008. – Vol. 326, N 1/2. – P. 37–41.
24. In-water and neat batch and continuous-flow direct esterification and transesterification by a porous polymeric asid catalyst / H. Baek [et al.] // Sci. Rep. – 2016. – Vol. 6. – P. 25925.
25. Direct dehydrative esterification of alcohols and carboxylic acids with a macroporous polymeric acid catalyst / M. Minakawa [et al.] // Org. Lett. – 2013. – Vol. 15, N 22. – P. 5798–5801.
26. Karimi, B. SBA-15-functionalized sulfonic acid confined acidic ionic liquid: A powerful ad water-tolerant catalyst for solvent-free esterifications / B. Karimi, M. Vafaeezadeh // Chem. Commun. (Cambridge, England).– 2012. – Vol. 48, N 27. – P. 3327–3329.
27. p-Sulfonic acid calyx[n]arenes as homogeneous and recyclable organocatalysts for esterification reactions / S. A. Fernandes [et al.] // Tetrahedron Lett. – 2012. – Vol. 53, N 13. – P. 1630–1633.
28.Thonbas, R. S. Biomass derived β-cyclodextrin-SO3H as a solid acid catalyst for esterification of carboxylic acids with alcohols / R. S. Thonbas, A. R. Jadhav, V. H. Jadhav // RSC Adv. – 2015. – Vol. 5. – P. 12981–12986.
29. Cathodic esterification of carboxylic acids / T. Awata [et al.] // Chem. Lett. – 1985. – Vol. 14, N3. – P. 371–374.
30. Esterification, etherification and aldol condensation using cathodically-generated organic olate anions / T. Fichigami [et al.] // Bull. Chem. Soc. Jap. – 1986. – Vol. 59, № 9. – P. 2873–2879.
31. Esterification of carboxylic acids with alkyl halides using elecroreduction / Y. Miyamoto [et al.] // Electrochemistry. – 2015. – Vol. 83. – P. 161–164.
32. Matsumoto, K. Recent Advances in the Synthesis of Carboxylic Acid Esters / K.Matsumoto, Y.Rina, O. Yohei // Carboxylic Acid – Key Role in Life Sciences / edited by Georgiana Ileana Badea and Gabriel Lucian Radu. – London: Intech Open, 2018. – Chap. 2. – P. 7 – 34.
33. Oe, Y. Ruthenium catalyzed addition reaction of carboxylic acid across olefins without β-hydride elimination / Y. Oe, T. Ohta, Y. Ito // Chem. Commun. – 2004, 21 jul. – N 14. – P.1620–1621.
34. Yang, C. Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to olefins / C. Yang, C. He // J. Am. Chem. Soc. – 2005. – Vol. 127, N 19. – P. 6966–6967.
35. Taylor, G. J. Copper(II)-catalyzed addition of O-H bonds to norbornene / G. J. Taylor, N.Whittall, K. K. Hii // Chem. Commun. (Camb.). – 2005, 28 oct. – N 40. – P. 5103–5105.
36. Chen, W. In (OTf)3-catalyzed intermolecular addition of carboxylic acids and phenols to norbornene under solvent-free conditions / W. Chen, J. Lu // Catal. Commun. – 2007. – Vol. 8, N8.– P. 1298–1300.
37. Iron-catalyzed green synthesis of carboxylic esters by the intermolecular addition of carboxylic acids to alkenes / J. Choi [et al.] // Chemical Commun. – 2008, N 6. – P. 777–779.
38. Synthesis of RuCl2(xantphos)L (L = PPh3, P(OPh)3, DMSO) complexes and their catalytic activity for the addition of carboxylic acids onto olefins / S. Higashi [et al.] // J. Organomet. Chem. – 2015, aug. – Vol. 791. – P. 46–50.
39. Функциональные производные 4-формил-2-метоксифенилизоникотината / В.И.Поткин [и др.] // Журн. орган. хим. – 2019. – Т. 55, № 10. – С. 1527–1539.
40. Производные изованилинового эфира изоникотиновой кислоты / Е. А. Дикусар [и др.] // Вестник фармации. – 2020. – № 3. – С. 55–64.
41. Акишина, Е. А. Синтез функционально замещенных сложных эфиров никотиновой и изоникотиновой кислот / Е. А. Акишина, Д. В. Казак, Е. А. Дикусар // Весці Нац. акад. навук Беларусі. Сер. хім. навук. – 2020. – Т. 56, № 3. – С. 301–310.
42. Гетероциклические производные 4-амино-1,5-диметил2-фенил-1,2-дигидро3Н-пиразол-3-она / Е. А. Акишина [и др.] // Журн. общ. химии. – 2020. – Т. 90, № 8. – С. 1223–1230.
43. Functional Derivatives of Ethyl 4-(Chloromethyl)-2,6-dimethylpyridine-3-carboxylate / E. A. Dikusar [et al.] // Rus. J. Org. Chem. – 2018. – Vol. 54. – P. 87–94.
44. Soukhyarani, G. N. Synthesis of novel Schiff bases containing arylpyridines as promising antibacterial agents / G.N. Soukhyarani, P. Boja // Heliyon. – 2019. – Vol. 5, N 8. – P. e02318.
45. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications/ N.Sinthupoom [et al] // Eur. Food Res. Technol. – 2015. – Vol. 240. – P. 1–17.
46. Zhou, P. P. Nicotinic Acid and its Derivatives: Synthetic Routes, Crystal Forms and Polymorphs / P. P. Zhou, X. B. Sun, W. Y. Qiu // Curr. Drug Discov. Technol. – 2014. – Vol. 11, N2.– P.97–108.
47. Chen, J. Niancin, an old drug, has new effects on central nervous system disease / J.Chen, M.Chopp // Open Drug Discov. J. – 2010. – Vol. 2. – P. 181–186.
48. Prousky, J.E. Treating dementia with vitamin B3 and NADH / J. E. Prousky // J. Orthomol. Med.– 2011. – Vol. 26, N 4. – P. 163–174.
49. Харкевич, Д. А. Фармакология: учеб. для студентов мед. вузов / Д. А. Харкевич. – 10-е изд.– Москва: ГЭОТАР-Медиаб, 2010. – 908 с.
50. Клиническая фармакология и фармакотерапия: учеб. пособие / под ред. В. Г. Кукеса, А.К.Стародубцева. – 3-е изд., доп. и перераб. – Москва: ГЭОТАР-Медиа, 2013.– 832 с.
51. Концепция направленной фармакокинетики противотуберкулезных препаратов / С.С.Гаврильев [и др.] // Успехи совр. естествознания. – 2009. – № 11. – С. 79–81.
52. Synthesis and Biological Evaluation of Some Novel Nicotinic Acid Derivatives / N.Ramalakshmi [et al.] // Malays. J. Sci. – 2009. – Vol. 28, N 2. – P. 197–203.
53. Cytotoxic Effects of Chemotherapeutic Drugs and Heterocyclic Compounds at Application on the Cells of Primary Culture of Neuroepithelium Tumors / V. A. Kulchitsky [et al.] // Med. Chem. – 2012. – Vol. 8, N 1. – P. 22–32.
54. Filz, O. A. Fragment-based lead design / O. A. Filz, V. V. Poroikov // Russ. Chem. Rev.– 2012.– Vol. 81, N 2. – P. 158–174.
55. Saleem, L. M. N. Trans-cis isomerization of Shiff’s bases (N-benzilideneanilines) on addition of lanthanide shift reagents / L. M. N. Saleem // Org. Magn. Reson. – 1982. – Vol.19, N 4. – P.176–180.
56. Macho, V. One stage preparation of Shiff’s bases from nitroarenes, aldehydes and carbon monoxide at presence of water / V. Macho, M. Kralic, J. Hudec // J. Mol. Catal. A. Chem. – 2004. – Vol. 209, N 1. – P. 69–73.
57. Bey, P. Synthesis of alpha-alkyl and alpha-functionalized methyl-alpha-amino acids / P.Bey, J.P. Vevert // Tetrahedron Lett. – 1977. – Vol. 18, N 17. – P. 1455–1458.
58. Nayak, S. G. Synthesis of novel Shiff bases containing arylpyrimidines as promising antibacterial agents / S. G. Nayak, B. Poojary // Heliyon. – 2019. – Vol. 5, N 8. – P. e02318.
59. Heterocyclic Schiff base Cu (II) metal complexes and their X-Ray diffraction study / V.Devdatta [et al.] // Eur. J. Pharm. Med. Res. – 2017. – Vol. 4, N 9. – P. 680–683.
60. Yadav, P. Synthesis and Biological Activities of Schiff bases and Their Derivatives: AReview of Recent Work / P. Yadav, A. Sarkar, A. Kumar // J. Bas. Ap. Eng. Res. – 2019. – Vol.6, N 1. – P. 62–65.
61. Sinthuja, S. A. Synthesis, Characterization and Evaluation of Biological Properties of Transition Metal Chelates with Schiff base Ligands Derived from Glutaraldehyde with L-Leucine / S.A. Sinthuja, Y.C.Shaji, G.L. Rose // Int. J. Sci. Res. Sci. Technol. – 2018. – Vol. 4, N 2. – P.587–592.
62. Studies on the mixed ligand complexes of Co (II), Ni (II) and Cu (II) with phthalimide and heterocyclic amines / Md. Kudrat-E-Zahan [et al.] // Intern. J. Mat. Sci. Ap. – 2015. – Vol. 4, N2.– P. 120–123.
63. Spectroscopy, electrochemistry and structure of 3D-transition metal complexes of thiosemicarbazones with quinoline core: evaluation of antimicrobial property / N. V. Kulkarni [et al.] // Spectrosc. Lett. – 2010. – Vol. 43, N 3. –
P. 235–246.
64. Muslim, R. F. Synthesis, Characterization and Evaluation of Biological Activity of Novel Heterocyclic Derivatives from Azomethine Compounds / R. F. Muslim, S. E. Saleh // Oriental J. of Chem. – 2019.– Vol. 35, N 4. – P. 1360–1367.
65. Synthesis, Characterization and Biological Activity Studies of Mixed Ligand Complexes with Schiff base and 2,2’-Bipyridine / Md. S. Hossain [et al.] // Int. J. Apppl. Sci.-Res. Rev. – 2019.– Vol. 6, N1/2. – P. 1–7.
66. Design, synthesis and evaluation of acridine derivatives as multitarget Scr and MEK kinase inhibitors for anti-tumor treatment / Z. Cui [et al.] // Bioorg. Med. Chem. – 2016. – Vol. 24, N2.– P. 261–269.
67. Recent Progress of Acridine Derivatives with Antitumor Activity / X. Lang [et al.] // Prog. Chem. – 2012. – Vol. 24, N 8. – P. 1497–1505.
68. Design, Synthesis, Antimicrobial and Anticancer Activities of Acridine Thiosemicarbazides Derivatives / R. Chen [et al.] // Molecules. – 2019. – Vol. 24, N 11. – P. 2065.
69. Gensicka-Kowalewska, M. Recent developments in the synthesis and biological activity of acridine/acridone analogues / M. Gensicka-Kowalewska, G. Cholewinski, K. Dzierzbicka // RSC Adv. – 2017. – Vol. 7, N 26. – P. 15776–15804.
70. Demeunynck, M. Interest of acridine derivatives in the anticancer chemotherapy / M.Demeunynck, F. Charmantray, A. Martelli // Curr. Pharm. Des. – 2001. – Vol. 7, N 17. – P.1703–1724.
71. Niknam, K. 1-Butyl-3-Methylimidazolium Hydrogen Sulfate [bmim]HSO4: An Efficient Reusable Acidic Ionic Liquid for the Synthesis of 1,8-Dioxo-Octahydroxanthenes / K. Niknam, M.Damya // J.Chin. Chem. Soc. – 2009. – Vol. 56, N 3. – P. 659–665.
72. Nasim, A. Genetic effects of acridine compounds / A. Nasim, T. Brychcy // Mutat. Res.– 1979. – Vol. 65, N 4. – P. 261–288.
73. Design, synthesis, pharmacological evaluation and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents / M. Mohammadi-Khanaposhtani [et al.] // Eur. J. Med. Chem. – 2016, apr. – Vol. 112. – P. 91–98.
74. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization / K. Lee [et al.] // Proc. Natl. Acad. Sci. USA. – 2009. – Vol. 106, N 42. – Р. 17910–17915.
75. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin-acridine hybrids / J. P. Joubert [et al.] // Eur. J. Pharm. Sci. – 2014 Jun. – Vol. 56. – P. 16–27.
76. Muscia, G.C. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents / G. C. Muscia, G. Y. Buldain, S. E. Asis // Eur. J. Med. Chem. – 2014 Feb. – Vol. 73. – P. 243–249.
77. Synthesis and biological evaluation of modified acridines: the effect of N- and O-substituent in the nitrogenated ring on antitumor activity / I. Sanchez [et al.] // Eur. J. Med. Chem. – 2006. – Vol. 41, N3.– P. 340–352.
78. Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome/ S. Vispe [et al.] // Biochem. Pharmacol. – 2007. – Vol. 73, N 12. – P. 1863–1872.
79. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? / P. Belmont [et al.] // Anti-Cancer Agents Med. Chem. – 2007. – Vol. 7, N 2. – P.139–169.
80. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II / L.M. Oppegard [et al.] // Eur. J. Pharmacol. – 2009. – Vol. 602, N2/3.– P. 223–229.
81. Electrochemical oxidation and interaction of 9-chloroacridine with DNA at glassy carbon electrode / J. Pantic [et al.] // Physical Chemistry 2016: proceedings of 13th International Conference on Fundamental and Applied Aspects of Physical Chemistry. – Belgrade, Serbia. – 2016. – Vol. 1. – P. 383–386.
82. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum / S.J.Burgess [et al.] // J. Med. Chem. – 2006. – Vol. 49, N 18. – P. 5623–5625.
83. Redesigning the DNA-targeted chromophore in platinum–acridine anticancer agents: a structure – activity relationship study / A. J. Pickard [et al.] // Chemistry. – 2014. –Vol. 20, N 49. – P. 16174–16187.
84. Nowak, K. Chemical structures and biological activities of bis- and tetrakis-acridine derivatives: A review / K. Nowak // J. Mol. Struct. – 2017. – Vol. 1146. – P. 562–570.
85. 8,16-Дизамещенные производные 2,3,4,5,8,10,11,12,13,16-декагидро-3,3,11,11-тетраметилакридино[4,3-c]акридин-1,9-диона. Сообщ. 1 / Е. А. Дикусар [и др.] // Вестник фармации. – 2019. – № 1. – С. 25–35.
86. 8,16-Дизамещенные производные 2,3,4,5,8,10,11,12,13,16-декагидро-3,3,11,11-тетраметилакридино[4,3-c]акридин-1,9-диона. Сообщ. 2 / Е.А. Дикусар [и др.] // Вестник фармации. – 2020. – N 1. – С. 67–74.
87. (Е,Е)-8,16-диазометины на основе 1,5-диаминонафталина. Сообщ. 3 / Е.А. Дикусар [и др.]// Вестник фармации. – 2020. – № 2. – С. 47–57.
88. Синтез противогрибковых и противовирусных соединений в ряду производных антипирина / В.И. Крутиков [и др.] // Изв. СПбГТИ (ТУ). – 2014. – № 26. – С. 53–57.
89. Synthesis of antipirine/pyridazinone hydrids and investigation of their in vivo analgesic and anti-inflammatory activities / S. Baytas [et al.] // Turk. J. Chem. – 2012. – Vol. 36, N 5. – P. 734–748.
90. Coordination chemistry and bioactivity of Ni2+, Cu22+, Cd2+ and Zn2+ complexes containing bidentate Schiff bases derived from S benzyldithio-carbazate and the X-ray crystal structure of bis[S-benzyl-b-N-(5-methyl-2 furyl-methylene) dithiocarbazato]cadmium(II)/M.T.H.Tarafder [et al.] // Polyhedron. – Vol. 21, N 25/26. – P. 2547–2554.
91. Meshram, J. Towards a novel approach to bis-b-lactam synthesis using Vilsmeier reagent as an efficient entity via Staudinger cycloaddition reaction / J. Meshram, A. Parvez, V. Tiwari // J. Heterocycl. Chem. – 2010.– Vol. 47, N 6. – P. 1454–1458.
92. Meshram, J. Zeolite as an efficient and recyclable activation surface for the synthesis of Bis-thiazolidinones: theoretical screening owing to experimental biology / J. Meshram, A. Parvez, V. Tiwari // Green Ghem. Lett. Rev.– 2010. – Vol. 3, N 3. – P. 195–200.
93. Ali P. Exploring microwave synthesis for co-ordination: synthesis, spectral characterization and comparative study of transition metal complexes with binuclear core derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one / P. Ali, P. Ramakanth, J. Meshram // J. Coord. Chem. – 2010. – Vol. 63, N 2. – P. 323–329.
94. Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground / A. Parvez [et al.] // Med. Chem. Res. – 2012. – Vol. 21. – P. 157–164.
95. Гетероциклические производные 4-амино-2,3-диметил-1-фенилпиразолона-5/ Е.А. Акишина [и др.] // Current chemical problems (CCP-2020): book of abstr. of the III International (XIII Ukrainian) scientific conf. for students and young scientists, 25–27 march, 2020 year, Vinnytsia. – Vinnytsia: Vasyl’ Stus Donetsk National University, 2020. – P. 68.
96. Степин, С. Г. Синтез азометиновых производных 4-амино-2,3-диметил-1-фенил пиразолона-5 / С.Г. Степин, Е.А. Дикусар, Д.С. Ворона // Современные достижения фармацевтической науки и практики: материалы Междунар. конф., посвящ. 60-летию фармацевт. фак. учреждения образования «Витебский гос. ордена Дружбы народов мед. ун-т», 31 окт., 2019 г., Витебск. – Витебск: ВГМУ, 2019. – С. 27–29. – 1 электрон. опт. диск (CD-ROM).
97. Синтез и физико-химические характеристики (Е)-4-[(2-гидрокси-3-метоксибензилиден)амино]-1,2-дигидро-1,5-диметил-2-фенил-3Н-пиразолона-3 / С.Г.Стёпин [и др.]// Достижения фундаментальной, клинической медицины и фармации: материалы 75-ой науч. сес. ВГМУ, 29–30 янв. 2020 г., Витебск. – Витебск: ВГМУ, 2020. – С.316–318. – 1 электрон. опт. диск (CD-ROM).
98. Novel naproxen derivatives: lewis acid/transition-metal free synthesis via C-C bond forming reaction / S. Pal [et al.] // Lett. Org. Chem. – 2007. – Vol. 4, N 4. – P. 292–296.
Адрес для корреспонденции:
220072, Республика Беларусь,
г. Минск, ул. Сурганова, 13,
Институт физико-органической химии
Национальной академии наук Беларуси,
тeл.: +375-17-2841600,
моб. +375-29-6228644,
E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.,
Дикусар Е. А.
Поступила 13.10.2020 г.