УДК 546.47:616–084]615.1
DOI: https://doi.org/10.52540/2074-9457.2025.1.70
Скачать статью 

 

М. Р. Конорев, Н. Р. Прокошина, Т. М. Соболенко

ЦИНК: ОТ ПРОФИЛАКТИКИ ДЕФИЦИТА ДО ТЕРАПЕВТИЧЕСКОГО ПОТЕНЦИАЛА. ЧАСТЬ 1

Витебский государственный ордена Дружбы народов медицинский университет, г. Витебск, Республика Беларусь

 

Цинк является жизненно важным нутриентом для человека как участник метаболических процессов в организме, выполняющий каталитическую, структурную и регуляторную функции. Для поддержания необходимого уровня цинка требуется его ежедневное поступление с пищей, так как он не депонируется в организме. Дефицит цинка широко распространен во всем мире и до настоящего времени остается актуальной проблемой общественного здравоохранения. В первой части обзора представлены современные данные о биологической роли в организме человека, пищевых источниках и нормах потребления цинка. Описаны этиологические факторы, клинические проявления врожденного и приобретенного дефицита, острые и хронические формы отравления цинком. Дана характеристика тяжелого, умеренного и легкого дефицита данного микроэлемента. Обсуждается проблема распознавания легкого дефицита ввиду неспецифичности клинических признаков и отсутствия надежных биомаркеров для оценки индивидуального цинкового статуса. Рассмотрены перспективные стратегии профилактики дефицита цинка, включающие обогащение продуктов питания, прием пищевых добавок, а также использование технологий биофортификации. Новые подходы к обогащению/биофортификации пищевых продуктов цинком могут стать многообещающими инструментами для предотвращения его дефицита.

Ключевые слова: цинк, дефицит цинка, пищевые добавки цинка, обогащение пищевых продуктов, биофортификация.

 

SUMMARY 

R. Konorev, N. R. Prakoshyna, T. M. Sabalenka

ZINC: FROM DEFICIENCY PREVENTION TO THERAPEUTIC POTENTIAL. PART 1

Zinc is a vital nutrient for humans as an agent in metabolic processes in the body performing catalytic, structural and regulatory functions. To maintain the required level of zinc it is required to receive it daily with food since it is not deposited in the body. Zinc deficiency is widespread throughout the world and remains a topical public health problem so far. The first part of the review presents current data on the biological role of zinc in the human body, food sources and its consumption rates. Etiological factors, clinical manifestations of congenital and acquired deficiency, acute and chronic forms of zinc poisoning are described. Severe, moderate and slight deficiency of this microelement is characterized. The problem of recognizing slight deficiency due to the nonspecificity of clinical signs and lack of reliable biomarkers for assessing individual zinc status is discussed. Promising strategies for the prevention of zinc deficiency including food fortification, intake of food supplements and the use of biofortification technologies are considered. Novel approaches to zinc fortification/biofortification of foods may be promising tools to prevent zinc deficiency.

Keywords: zinc, zinc deficiency, zinc supplementation, food fortification, biofortification.

 

ЛИТЕРАТУРА

  1. Preventing and controlling zinc deficiency across the life course: a call to action / N. M. Lowe, A. G. Hall, M. R. Broadley [et al.] // Advances in nutrition. – 2024. – Vol. 15, N 3. – P. 100181. – DOI: 10.1016/j.advnut.2024.100181.
  2. Gupta, S. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation / S. Gupta, A. K. M. Brazier, N. M. Lowe // Journal of human nutrition and dietetics. – 2020. – Vol. 33, N 5. – P. 624–643. – DOI: 10.1111/jhn.12791.
  3. Prasad, A. S. Discovery of human zinc deficiency: its impact on human health and disease / A. S. Prasad // Advances in nutrition. – 2013. – Vol. 4, N 2. – P. 176–190. – DOI: 10.3945/an.112.003210.
  4. Prasad, A. S. Discovery of zinc for human health and biomarkers of zinc deficiency / A. S. Prasad // Molecular, genetic, and nutritional aspects of major and trace minerals / ed. J. F. Collins. – London: Academic Press, 2017. – Chap. 20. – P. 241–260.
  5. Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population / D. Shah, H. S. Sachdev, T. Gera [et al.] // The Cochrane database of systematic reviews. – 2016. – N 6. – DOI: 10.1002/14651858.CD010697.pub2.
  6. Hall, A. G. The molecular basis for zinc bioavailability / A. G. Hall, J. C. King // International journal of molecular sciences. – 2023. – Vol. 24, N 7. – P. 6561. – DOI: 10.3390/ijms24076561.
  7. Gammoh, N. Z. Zinc in infection and inflammation / N. Z. Gammoh, L. Rink // Nutrients. – 2017. – Vol. 9, N 6. – P. 624. – DOI: 10.3390/nu9060624.
  8. Recent aspects of the effects of zinc on human health / C. T. Chasapis, P. A. Ntoupa, C. A. Spiliopoulou, M. E. Stefanidou // Archives of toxicology. – 2020. – Vol. 94, N 5. – P. 1443–1460. – DOI: 10.1007/s00204-020-02702-9.
  9. Mehri, A. Trace elements in human nutrition (II) – An Update / A. Mehri // International journal of preventive medicine. – 2020. – Vol. 11. – P. 2. – DOI: 10.4103/ijpvm.IJPVM_48_19.
  10. Biomarkers of nutrition for development (BOND)-zinc review / J. C. King, K. H. Brown, R. S. Gibson [et al.] // The Journal of nutrition. – 2016. – Vol. 146, N 4. – P. 858S–885S. – DOI: 10.3945/jn.115.220079.
  11. Проблема дефицита цинка в рационе питания населения и биотехнологические подходы к ее решению / Н. И. Дубовец, Н. М. Казнина, О. А. Орловская, Е. А. Сычева // Молекулярная и прикладная генетика. – 2021. – Т. 31. – С. 147–158. – DOI: 10.47612/1999-9127-2021-31-147-158.
  12. Бекетова, Г. В. Цинк и его влияние на здоровье человека в условиях пандемии COVID-19: что нового? / Г. В. Бекетова, И. П. Горячева // Педиатрия. Восточная Европа. – 2021. – Т. 9, № 1. – С. 8–20. – DOI: 10.34883/PI.2021.9.1.001.
  13. Glutsch, V. Zinc and skin: an update / V. Glutsch, H. Hamm, M. Goebeler // Journal der Deutschen Dermatologischen Gesellschaft. – 2019. – Vol. 17, N 6. – P. 589–596. – DOI: 10.1111/ddg.13811.
  14. King, J. C. Zinc: an essential but elusive nutrient / J. C. King // The American journal of clinical nutrition. – 2011. – Vol. 94, N 2. – P. 679S–684S. – DOI: 10.3945/ajcn.110.005744.
  15. Multifunctional role of zinc in human health: an update / D. P. Kiouri, E. Tsoupra, M. Peana [et al.] // EXCLI journal. – 2023. – Vol. 22. – P. 809–827. – DOI: 10.17179/excli2023-6335.
  16. Costa, M. I. Zinc: from biological functions to therapeutic potential / M. I. Costa, A. B. Sarmento-Ribeiro, A. C. Gonçalves // International journal of molecular sciences. – 2023. – Vol. 24, N 5. – P. 4822. – DOI: 10.3390/ijms24054822.
  17. Преснякова, М. В. Биологическая роль цинка и его значимость в патогенезе расстройств аутистического спектра / М. В. Преснякова, О. В. Костина, Ж. В. Альбицкая // Социальная и клиническая психиатрия. – 2019. – Т. 29, № 3. – С. 63–70.
  18. Improving dietary zinc bioavailability using new food fortification approaches: a promising tool to boost immunity in the light of COVID-19 / M. Chemek, A. Kadi, S. Merenkova [et al.] // Biology. – 2023. – Vol. 12, N 4. – P. 514. – DOI: 10.3390/biology12040514.
  19. Mineral composition and bioaccessibility in rocket and purslane after Zn biofortification process / M. D'Imperio, F. F. Montesano, F. Serio [et al.] // Foods. – 2022. – Vol. 11, N 3. – P. 484. – DOI: 10.3390/foods11030484.
  20. Determination of zinc concentrations in foods of animal origin, fish and shellfish from Croatia and assessment of their contribution to dietary intake / N. Bilandžić, M. Sedak, M. Đokić [et al.] // Journal of Food Composition and Analysis. – 2014. –·Vol. 35, iss. 2. – P. 61–66. – DOI: 10.1016/j.jfca.2014.04.006.
  21. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc / J. Li, C. Gong, Z. Wang [et al.] // Marine drugs. – 2019. – Vol. 17, N 6. – P. 341. – DOI: 10.3390/md17060341.
  22. Клиническое значение цинка: результаты проспективного наблюдения за детьми в течение 14 лет / Т. И. Легонькова, О. Н. Штыкова, О. В. Войтенкова, Т. Г. Степина // Медицинский совет. – 2018. – № 11. – С. 147–153. – DOI: 10.21518/2079-701X-2018-11-147-153.
  23. Trace elements in human nutrition and health / World Health Organization. – Geneva, 1996. – URL: file:///C:/Users/Home/Downloads/9241561734_eng.pdf (date of access: 03.02.2025).
  24. Gibson, R. S. A review of dietary zinc recommendations / R. S. Gibson, J. C. King, N. Lowe // Food and nutrition bulletin. – 2016. – Vol. 37, N 4. – P. 443–460. – DOI: 10.1177/0379572116652252.
  25. Санитарные нормы и правила «Требования к питанию населения: нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Республики Беларусь», утвержденные постановлением Министерства здравоохранения Республики Беларусь от 20 ноября 2012 г. № 180, с изменениями, утвержденными постановлением Министерства здравоохранения Республики Беларусь от 16 ноября 2015 г. № 111 / Министерство здравоохранения Республики Беларусь. – URL: http://minzdrav.gov.by/ru/dlya-spetsialistov/normativno-pravovaya-baza/tekhnicheskie-normativnye-pravovye-akty/teksty-tekhnicheskikh-normativnykh-aktov/pishchevye-produkty-i-pishchevye-dobavki.php?sphrase_id=457342 (дата обращения: 10.02.2025).
  26. Maverakis, E. Acrodermatitis enteropathica / E. Maverakis, P. J. Lynch, N. Fazel // Dermatology online journal. – 2007. – Vol. 13, N 3. – P. 11. – DOI: 10.5070/D366V664N2.
  27. Acrodermatitis enteropathica / S. Kumar, V. Thakur, R. Choudhary, K. Vinay // The Journal of pediatrics. – 2020. – Vol. 220. – P. 258–259. – DOI: 10.1016/j.jpeds.2020.01.017.
  28. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica / K. Wang, B. Zhou, Y.M. Kuo [et al.] // American journal of human genetics. – 2002. – Vol. 71, N 1. – P. 66–73. – DOI: 10.1086/341125.
  29. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control / K. H. Brown, J. A. Rivera, Z. Bhutta [et al.] // Food and nutrition bulletin. – 2004. – Vol. 25, N 1, suppl. 2. – S99–203. – URL: https://archive.unu.edu/unupress/food/fnb25-1s-IZiNCG.pdf (date of access: 19.02.2025).
  30. Значение коррекции дефицита цинка в практической медицине: обзор / А. В. Скальный, Т. И. Сотникова, Т. В. Коробейникова, А. А. Тиньков // Сеченовский вестник. – 2022. – Т. 13, № 4. – С. 4–17. – DOI: 10.47093/2218-7332.2022.13.4.4-17.
  31. Изучение обеспеченности микроэлементами селена, йода, железа и цинка населения различных экологических регионов Республики Беларусь с высокими показателями заболеваемости щитовидной железы / С. В. Петренко, Б. Ю. Леушев, Л. С. Гуляева [и др.] // Журнал Белорусского государственного университета. Экология. – 2018. – № 4. – С. 109–118.
  32. Corbo, M. D. Zinc deficiency and its management in the pediatric population: a literature review and proposed etiologic classification / M. D. Corbo, J. Lam // Journal of the American Academy of Dermatology. – 2013. – Vol. 69, N 4. – P. 616–624. – DOI: 10.1016/j.jaad.2013.04.028.
  33. Fessler, T. A. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients / T. A. Fessler // Nutrition in clinical practice. – 2013. – Vol. 28, N 6. – P. 722–729. – DOI: 10.1177/0884533613506596.
  34. Lucena-Valera, A. Wilson's disease: overview / A. Lucena-Valera, P. Ruz-Zafra, J. Ampuero // Medicina clinica. – 2023. – Vol. 160, N 6. – P. 261–267. – DOI: 10.1016/j.medcli.2022.12.016.
  35. Maternal hair zinc concentration in neural tube defects in Turkey / A. O. Cavdar, M. Bahçeci, N. Akar [et al.] // Biological trace element research. – 1991. – Vol. 30, N 1. – P. 81–85. – DOI: 10.1007/BF02990344.
  36. Experimental zinc deficiency in humans /A. S. Prasad, P. Rabbani, A. Abbasii [et al.] // Annals of internal medicine. – 1978. – Vol. 89, N 4. – P. 483–490. – DOI: 10.7326/0003-4819-89-4-483.
  37. Hall, A. G. Zinc fortification: current trends and strategies / A. G. Hall, J. C. King // Nutrients. – 2022. – Vol. 14, N 19. – P. 3895. – DOI: 10.3390/nu14193895.
  38. Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight / S. Hussain, M. Khan, T. M. M. Sheikh [et al.] // Frontiers in microbiology. – 2022. – Vol. 13. – P. 900740. – DOI: 10.3389/fmicb.2022.900740.
  39. Lewis, M. R. Zinc gluconate: acute ingestion / M. R. Lewis, L. Kokan // J Toxicol Clin Toxicol. – 1998. – Vol. 36, N 1/2. – P. 99–101. – DOI: 10.3109/15563659809162595.
  40. Fosmire, G. J. Zinc toxicity / G. J. Fosmire // The American journal of clinical nutrition. – 1990. – Vol. 51, N 2. – P. 225–227. – DOI: 10.1093/ajcn/51.2.225.
  41. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide / M. Brnić, R. Wegmüller, C. Zeder [et al.] // The Journal of nutrition. – 2014. – Vol. 144, N 9. – P. 1467–1473. – DOI: 10.3945/jn.113.185322.
  42. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide / R. Wegmüller, F. Tay, C. Zeder [et al.] // The Journal of nutrition. – 2014. – Vol. 144, N 2. – P. 132–136. – DOI: 10.3945/jn.113.181487.
  43. Preliminary comparison of fractional absorption of zinc sulphate, zinc gluconate, and zinc aspartate after oral supple-mentation in healthy human volunteers / F. Piacenza, R. Giacconi, L. Costarelli, M. Malavolta // Nutrients. – 2023. – Vol. 15, N 8. – P. 1885. – DOI: 10.3390/nu15081885.
  44. ESPEN micronutrient guideline / M. M. Berger, A. Shenkin, A. Schweinlin [et al.] // Clinical nutrition. – 2022. – Vol. 41, N 6 – P. 1357–1424. – DOI: 10.1016/j.clnu.2022.02.015.
  45. Udechukwu, M. C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides / M. C. Udechukwu, S. A. Collins, C. C. Udenigwe // Food & function. – 2016. – Vol. 7, N 10. – P. 4137–4144. – DOI: 10.1039/c6fo00706f.
  46. Characterization of zinc amino acid complexes for zinc delivery in vitro using Caco-2 cells and enterocytes from hiPSC / A. K Sauer, S. Pfaender, S. Hagmeyer [et al.] // Biometals. – 2017. – Vol. 30, N 5. – P. 643–661. – DOI: 10.1007/s10534-017-0033-y.
  47. Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulfate in healthy men / J. Schölmerich, A. Freudemann, E. Köttgen [et al.] // The American journal of clinical nutrition. – 1987. – Vol. 45, N 6. – P. 1480–1486. – DOI: 10.1093/ajcn/45.6.1480.
  48. A bioavailability study comparig two oral formulations containing zinc (Zn bis-glycinate vs. Zn gluconate) after a single administration to twelve healthy female volunteers / P. Gandia, D. Bour, J. M. Maurette [et al.] // International journal for vitamin and nutrition research. – 2007. – Vol. 77, N 4. – P. 243–248. – DOI: 10.1024/0300-9831.77.4.243.

 

REFERENCES

  1. Lowe NM, Hall AG, Broadley MR, Foley J, Boy E, Bhutta ZA. Preventing and controlling zinc deficiency across the life course: a call to action. Adv Nutr. 2024;15(3):100181. doi: 10.1016/j.advnut.2024.100181
  2. Gupta S, Brazier AKM, Lowe NM. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet. 2020;33(5):624–43. doi: 10.1111/jhn.12791
  3. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4(2):176–90. doi: 10.3945/an.112.003210
  4. Prasad AS. Discovery of zinc for human health and biomarkers of zinc deficiency. In: Collins JF, editor. Molecular, genetic, and nutritional aspects of major and trace minerals. London, UK: Academic Press; 2017. Chap. 20. p. 241–60
  5. Shah D, Sachdev HS, Gera T, De-Regil LM, Rena-Rosas JP. Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population. Cochrane Database Syst. Rev. 2016;(6). doi: 10.1002/14651858.CD010697.pub2
  6. Hall AG, King JC. The molecular basis for zinc bioavailability. Int J Mol Sci. 2023;24(7):6561. doi: 10.3390/ijms24076561
  7. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6):624. doi: 10.3390/nu9060624
  8. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020;94(5):1443–60. doi: 10.1007/s00204-020-02702-9
  9. Mehri A. Trace elements in human nutrition (II) – An Update. Int J Prev Med. 2020;11:2. doi: 10.4103/ijpvm.IJPVM_48_19
  10. King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2016;146(4):858S–885S. doi: 10.3945/jn.115.220079
  11. Dubovets NI, Kaznina NM, Orlovskaia OA, Sycheva EA. The problem of zinc deficiency in the diet of the population and biotechnological approaches to its solution. Molekuliarnaia i prikladnaia genetika. 2021;31:147–58. doi: 10.47612/1999-9127-2021-31-147-158. (In Russ.)
  12. Beketova GV, Goriacheva IP. Zinc and its impact on human health during the COVID-19 pandemic: what's new? Pediatriia. Vostochnaia Evropa. 2021;9(1):8–20. doi: 10.34883/PI.2021.9.1.001. (In Russ.)
  13. Glutsch V, Hamm H, Goebeler M. Zinc and skin: an update. J Dtsch Dermatol Ges. 2019;17(6):589–96. doi: 10.1111/ddg.13811
  14. King JC. Zinc: an essential but elusive nutrient. Am J Clin Nutr. 2011;94(2):679S–684S. doi: 10.3945/ajcn.110.005744
  15. Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI J. 2023;22:809–27. doi: 10.17179/excli2023-6335
  16. Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: from biological functions to therapeutic potential. Int J Mol Sci. 2023;24(5):4822. doi: 10.3390/ijms24054822
  17. Presniakova MV, Kostina OV, Al'bitskaia ZhV. Biological role of zinc and its importance in the pathogenesis of autism spectrum disorders. Sotsial'naia i klinicheskaia psikhiatriia. 2019;29(3):63–70. (In Russ.)
  18. Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving dietary zinc bioavailability using new food fortification approaches: a promising tool to boost immunity in the light of COVID-19. Biology (Basel). 2023;12(4):514. doi: 10.3390/biology12040514
  19. D'Imperio M, Montesano FF, Serio F, Santovito E, Parente A. Mineral composition and bioaccessibility in rocket and purslane after Zn biofortification process. Foods. 2022;11(3):484. doi: 10.3390/foods11030484
  20. Bilandžić N, Sedak M, Đokić M, Varenina I, Kolanovic BS, Božić D, et al. Determination of zinc concentrations in foods of animal origin, fish and shellfish from Croatia and assessment of their contribution to dietary intake. J Food Compost Anal. 2014;35(2):61–6. doi: 10.1016/j.jfca.2014.04.006
  21. Li J, Gong C, Wang Z, Gao R, Ren J, Zhou X, et al. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc. Mar Drugs. 2019;17(6):341. doi: 10.3390/md17060341
  22. Legon'kova TI, Shtykova ON, Voitenkova OV, Stepina TG. Clinical significance of zinc: results of a 14-year prospective follow-up of children. Meditsinskii sovet. 2018;(11):147–53. doi: 10.21518/2079-701X-2018-11-147-153. (In Russ.)
  23. World Health Organization. Trace elements in human nutrition and health. Geneva, Switzerland; 1996. URL: file:///C:/Users/Home/Downloads/9241561734_eng.pdf (date of access 2025 Febr 3)
  24. Gibson RS, King JC, Lowe N. A review of dietary zinc recommendations. Food Nutr Bull. 2016;37(4):443–60. doi: 10.1177/0379572116652252
  25. Ministerstvo zdravookhraneniia Respubliki Belarus'. Sanitary norms and rules "Requirements for nutrition of the population: standards of physiological needs for energy and nutrients for various groups of the population of the Republic of Belarus", approved by the Resolution of the Ministry of Health of the Republic of Belarus dated November 20, 2012 No. 180, with amendments approved by the Resolution of the Ministry of Health of the Republic of Belarus dated November 16, 2015 No. 111. URL: http://minzdrav.gov.by/ru/dlya-spetsialistov/normativno-pravovaya-baza/tekhnicheskie-normativnye-pravovye-akty/teksty-tekhnicheskikh-normativnykh-aktov/pishchevye-produkty-i-pishchevye-dobavki.php?sphrase_id=457342 (data obrashcheniia 2025 Fevr 10). (In Russ.)
  26. Maverakis E, Lynch PJ, Fazel N. Acrodermatitis enteropathica. Dermatol Online J. 2007;13(3):11. doi: 10.5070/D366V664N2
  27. Kumar S, Thakur V, Choudhary R, Vinay K. Acrodermatitis enteropathica. J Pediatr. 2020;220:258–9. doi: 10.1016/j.jpeds.2020.01.017
  28. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71(1):66–73. doi: 10.1086/341125
  29. Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lonnerdal B, et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25(1 Suppl 2):S99–203. URL: https://archive.unu.edu/unupress/food/fnb25-1s-IZiNCG.pdf (date of access 2025 Febr 19)
  30. Skal'nyi AV, Sotnikova TI, Korobeinikova TV, Tin'kov AA. The Importance of Correcting Zinc Deficiency in Practical Medicine: A Review. Sechenovskii vestnik. 2022;13(4):4–17. doi: 10.47093/2218-7332.2022.13.4.4-17. (In Russ.)
  31. Petrenko SV, Leushev BIu, Guliaeva LS, Nikitin DA, Laptenok SA. Study of the provision of microelements selenium, iodine, iron and zinc to the population of various ecological regions of the Republic of Belarus with high rates of thyroid disease. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiia. 2018;(4):109–18. (In Russ.)
  32. Corbo MD, Lam J. Zinc deficiency and its management in the pediatric population: a literature review and proposed etiologic classification. J Am Acad Dermatol. 2013;69(4):616–24. doi: 10.1016/j.jaad.2013.04.028
  33. Fessler TA. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients. Nutr Clin Pract. 2013;28(6):722–9. doi: 10.1177/0884533613506596
  34. Lucena-Valera A, Ruz-Zafra P, Ampuero J. Wilson's disease: overview. Med Clin (Barc). 2023;160(6):261–7. doi: 10.1016/j.medcli.2022.12.016. English, Spanish.
  35. Cavdar AO, Bahçeci M, Akar N, Dincer FN, Erten J. Maternal hair zinc concentration in neural tube defects in Turkey. Biol Trace Elem Res. 1991;30(1):81–5. doi: 10.1007/BF02990344
  36. Prasad AS, Rabbani P, Abbasii A, Bowersox E, Fox MR. Experimental zinc deficiency in humans. Ann Intern Med. 1978;89(4):483–90. doi: 10.7326/0003-4819-89-4-483
  37. Hall AG, King JC. Zinc fortification: current trends and strategies. Nutrients. 2022;14(19):3895. doi: 10.3390/nu14193895
  38. Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, et al. Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Front Microbiol. 2022;13:900740. doi: 10.3389/fmicb.2022.900740
  39. Lewis MR, Kokan L. Zinc gluconate: acute ingestion. J Toxicol Clin Toxicol. 1998;36(1-2):99–101. doi: 10.3109/15563659809162595
  40. Fosmire GJ. Zinc toxicity. Am J Clin Nutr. 1990;51(2):225–7. doi: 10.1093/ajcn/51.2.225.
  41. Brnić M, Wegmüller R, Zeder C, Senti G, Hurrell RF. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J Nutr. 2014;144(9):1467–73. doi: 10.3945/jn.113.185322
  42. Wegmüller R, Tay F, Zeder C, Brnic M, Hurrell RF. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr. 2014;144(2):132–6. doi: 10.3945/jn.113.181487
  43. Piacenza F, Giacconi R, Costarelli L, Malavolta M. Preliminary comparison of fractional absorption of zinc sulphate, zinc gluconate, and zinc aspartate after oral supple-mentation in healthy human volunteers. Nutrients. 2023;15(8):1885. doi: 10.3390/nu15081885
  44. Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, et al. ESPEN micronutrient guideline. Clin Nutr. 2022;41(6):1357–424. doi: 10.1016/j.clnu.2022.02.015
  45. Udechukwu MC, Collins SA, Udenigwe CC. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016;7(10):4137–44. doi: 10.1039/c6fo00706f
  46. Sauer AK, Pfaender S, Hagmeyer S, Tarana L, Mattes AK, Briel F, et al. Characterization of zinc amino acid complexes for zinc delivery in vitro using Caco-2 cells and enterocytes from hiPSC. Biometals. 2017;30(5):643–61. doi: 10.1007/s10534-017-0033-y
  47. Schölmerich J, Freudemann A, Köttgen E, Wietholtz H, Steiert B, Löhle E, et al. Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulfate in healthy men. Am J Clin Nutr. 1987;45(6):1480–6. doi: 10.1093/ajcn/45.6.1480
  48. Gandia P, Bour D, Maurette JM, Donazzolo Y, Duchene P, Bejot M, et al. A bioavailability study comparing two oral formulations containing zinc (Zn bis-glycinate vs. Zn gluconate) after a single administration to twelve healthy female volunteers. Int J Vitam Nutr Res. 2007;77(4):243–8. doi: 10.1024/0300-9831.77.4.243

Адрес для корреспонденции:

210009, Республика Беларусь,

г. Витебск, пр. Фрунзе, 27,

УО «Витебский государственный ордена

Дружбы народов медицинский университет»,

кафедра общей и клинической фармакологии

с курсом ФПК и ПК,

тел. раб.: 8 (0212) 58 13 87,

Конорев М. Р.

Поступила 09.01.2024 г.