УДК 631.413
DOI: https://doi.org/10.52540/2074-9457.2021.4.74
Г. Н. Бузук
ОПРЕДЕЛЕНИЕ ТРОФНОСТИ ПОЧВ ЭЛЕКТРОФИЗИЧЕСКИМ МЕТОДОМ.
СООБЩЕНИЕ 3. КОРРЕКТИРОВКА ВЛИЯНИЯ ВЛАЖНОСТИ
г. Витебск, Республика Беларусь
Целью настоящей работы была разработка способа корректировки влияния влажности почвы на определение удельного электрического сопротивления (УЭС). Поставленная цель достигается тем, что одновременно с измерением УЭС с помощью 4-электродной установки F. Wenner проводят определение с помощью емкостного датчика объемной влажности почвы. На основе анализа литературных и собственных данных предложены уравнения для корректировки УЭС на фоне различной объемной влажности и пористости почвы. Дальнейшее уточнение результатов измерений УЭС может быть достигнуто включением в состав уравнения параметров, связанных с емкостью катионного обмена (ЕКО) почвы, а именно содержания органического вещества и глинистых частиц. Высказано предположение о возможности экспрессного определения последних с помощью цветометрических (RGB) датчиков.
Ключевые слова:
геофизические методы, электрофизика почв, установка F. Wenner.
SUMMARY
A.N. Buzuk
DETERMINATION OF SOIL TROPHIСITY BY ELECTROPHYSICAL METHOD.
MESSAGE 3. ADJUSTMENT OF HUMIDITY INFLUENCE
The aim of this work was to develop a way to adjust the effect of soil humidity on the determination of specific electrical resistance (SER). This goal is achieved by the fact that measuring is made using a capacitive sensor of volumetric soil humidity simultaneously with the measurement of SER using a 4-electrode F.F. Wenner array. Based on the analysis of literary and own data equations for adjusting SER against the background of different volumetric humidity and soil porosity are proposed. Further refinement of SER measurement results can be achieved by including in the equation the parameters related to the cation-exchange capacity (CAC) of the soil, namely the content of organic matter and clay particles. It is suggested that it is possible to determine expressly the latter using color-gauge (RGB) sensors.
Keywords:
geophysical methods, electrophysics of soils, F. Wenner array.
ЛИТЕРАТУРА:
- Sharma, P. V. Environmental and engineering geophysics / P. V. Sharma. – Cambridge: Cambridge university press, 1997. – 475 p.
- Тен, К. Н. Альтернативная электроразведка: теория, методика и практика / К.Н. Тен. – Москва,2008. – 112 c.
- Reynolds, J. M. An introduction to applied and environmental geophysics / J. M. Reynolds. – 2nd ed. – Chichester: John Wiley & Sons, 2011. – 796 p.
- Поздняков, А. И. Электрофизика почв / А. И. Поздняков, А. Д. Позднякова. – Москва-Дмитров: Московский гос. ун-т, 2004. – 48 с.
- Поздняков, А. И. Полевая электрофизика почв / А. И. Поздняков. – Москва: Наука /Интерпериодика, 2001. – 430 c.
- Corwin, D. L. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods / D. L. Corwin // Handbook of Agricultural Geophysics / ed.: B. J. Allred, J. J. Daniels, M. R. Ehsani. – New York: CRC Press, 2008. – P. 17–44.
- Поздняков, А. И. Электрофизические методы исследования почв (методическое пособие для практики по физике почв) / А. И. Поздняков. – Москва: Московский гос. ун-т, 2009. – 38 c.
- Edwards, L. S. A modified pseudosection for resistivity and IP / L. S. Edwards // Geophysics. – 1977. – Vol. 42, N 5. – P. 1020–1036.
- Corwin, D. L. Laboratory and field measurements / D. L. Corwin, S. M. Lesch, D. B Lobell // Agricultural Salinity Assessment and Management / ed.: W. W. Wallender, K. K. Tanji. – Reston: American Society of Civil Engineers, 2012. – P. 295–341.
- Sophocleous, M. Electrical resistivity sensing methods and implications / M. Sophocleous // Electrical Resistivity and Conductivity / ed. A. E. Shahat. – London:InTech Open, 2017. – Chap. 2.
- Characterization of low-cost capacitive soil moisture sensors for IoT networks / P. Placidi [et al.]// Sensors (Basel, Swizerland). – 2020. – Vol. 20, N 12. – P. 3585.
- Calibration of capacitive soil moisture sensor (sku: Sen0193) / Radi [et al.] // 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 aug. 2018 y.: proc. – Yogyakarta: Universitas Gadjah Mada, 2018. – P. 1–6.
- Sakaki, T. A simple method for calibrating dielectric soil moisture sensors: Laboratory validation in sands / T. Sakaki, A.Limsuwat, T. H. Illangasekare // Vadose Zone J. – 2011. – Vol. 10, N 2. – P.526–531.
- Qu, J. S. The capacitive soil moisture sensor research / J. S. Qu, J. Fan, D. C. Huang // Appl. Mechanics and Materials. – 2014. – Vol. 584–586. – P. 2142–2149.
- Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors / S. Adla [et al.] // Sensors (Basel, Swizerland). – 2020. – Vol. 20, N 2. – P. 363.
- Смагин, А. В. Газовая фаза почв / А.В. Смагин. – Москва: Изд-во Московского ун-та, 2005. – 301 с.
- Почвенно-биогеоценотические исследования в лесных биогеоценозах / Л. О. Карпачевский [и др.]. – Москва: Изд-во Московского ун-та, 1980. – 160 с.
- Ковда, В. А. Основы учения о почвах. Кн. 1 / В. А. Ковда. – Москва: Наука, 1973. – 324 с.
- Electrical resistivity survey in soil science: a review / A.Samouëlian [et al.] // Soil and Tillage research. – 2005. – Vol. 83, N2. – P. 173–193.
- McCarter,W. J. The electrical resistivity characteristics of compacted clays / W. J. McCarter // Geotechnique. – 1984. – Vol. 34, N 2. – P. 263–267.
- Laboratory evaluation of soil geotechnical properties via electrical conductivity / F. Zohra-Hadjadj [et al.] // Rev. Fac.de Ingeniería Univ. de Antioquia. – 2019. – N90. – P. 101–112.
- Applications of electrical resistivity surveys in solving selected geotechnical and environmental problems / M. Lech [et al.] // Appl. Sciences. – 2020. – Vol. 10, N 7. – P.2263.
- Using the Modified Resistivity–Porosity Cross Plot Method to Identify Formation Fluid Types in Tight Sandstone with Variable Water Salinity / Y. Yang [et al.] // Energies. – 2021. – Vol. 14, N 19. – P.2–14.
- Oraby, M. A non-Archie water saturation method for conventional reservoirs based on generalization of Passey TOC model for unconventional reservoirs / M. Oraby // J. of Petroleum Exploration and Production Technology. – 2020. – Vol. 10, N 8. – P. 3295–3308.
- Mohamad, A. M. Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs / A. M. Mohamad, G. M Hamada // J. of Geophysics and Engineering. – 2017. – Vol. 14, N 6. – P. 1358–1367.
- Effects of clay fraction and pore water conductivity on electrical conductivity of sand-kaolinite mixed soils / H. Choo [et al.] //J. of Petroleum Science and Engineering. – 2016. – Vol. 147. – P. 735–745.
- Поздняков, А. И. Зависимости удельного электрического сопротивления от некоторых свойств антропогенно-преобразованных легких почв агроландшафтов гумидной зоны / А. И. Поздняков, П. И. Елисеев // Вестн. Оренбургского гос. ун-та. – 2012. – № 10. – С. 98–104.
- Поздняков, А. И. Электрофизический подход к оценке некоторых элементов окультуренности и плодородия легких почв гумидной зоны / А. И. Поздняков, П. И. Елисеев, Л. А. Поздняков // Почвоведение. – 2015. – № 7. – С. 832–842.
- Отражательная способность почвы в видимой и ближней инфракрасных областях оптического излучения / А. М. Егоров [и др.] // Перспективы науки. – 2018. – № 4. – С. 13–21.
- Караванова, Е. И. Оптические свойства почв и их природа / Е. И. Караванова. – Москва: Изд-во Московского ун-та, 2003. – 153 c.
- Спектрофотометрический способ определения содержания гумуса в агродерново-подзолистых почвах / С. В. Дробыш [и др.] // Почвоведение и агрохимия. – 2013. – № 2. – С. 64–75.
REFERENCES
- Sharma PV. Environmental and engineering geophysics. Cambridge, Great Britain: Cambridge university press; 1997. 475 p
- Ten KN. Alternative electrical exploration: teoriia, metodika i praktika. Moskva, RF; 2008. 112 s. (In Russ.)
- Reynolds JM. An introduction to applied and environmental geophysics. 2nd ed. Chichester, Great Britain: John Wiley & Sons; 2011. 796 p
- Pozdniakov AI, Pozdniakova AD. Electrophysics of soils. Moskva–Dmitrov, RF: Moskovskii gos un-t; 2004. 48 s. (In Russ.)
- Pozdniakov AI. Field electrophysics of soils. Moskva, RF: Nauka/Interperiodika; 2001. 430 s. (In Russ.)
- Corwin DL. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods. In: Allred BJ, Daniels JJ, Ehsani MR, editors. Handbook of Agricultural Geophysics. New York, USA: CRC Press; 2008. p. 17-44
- Pozdniakov AI. Electrophysical methods of soil research (methodological guide for practice in soil physics). Moskva, RF: Moskovskii gos un-t; 2009. 38 s. (In Russ.)
- Edwards LS. A modified pseudosection for resistivity and IP. Geophysics. 1977;42(5):1020–36. doi: 10.1190/1.1440762
- Corwin DL, Lesch SM, Lobell DB. Laboratory and field measurements. In: Wallender WW, Tanji KK, editors. Agricultural Salinity Assessment and Management. Reston, USA: American Society of Civil Engineers; 2012. p. 295–341
- Sophocleous M. Electrical resistivity sensing methods and implications. In: Shahat AE, editor. Electrical Resistivity and Conductivity. London, United Kingdom:InTech Open; 2017. Chapter 2
- Placidi P, Gasperini L, Grassi A, Cecconi M, Scorzoni A. Characterization of low-cost capacitive soil moisture sensors for IoT networks. Sensors (Basel). 2020;20(12):3585. doi: 10.3390/s20123585
- Radi, Murtiningrum,Ngadisih, Muzdrikah FS, Nuha MS, Rizqi FA. Calibration of capacitive soil moisture sensor (sku: Sen0193). In: 4th International Conference on Science and Technology (ICST). Proceedings; 2018 Aug 7-8; Yogyakarta, Indonesia. Yogyakarta, Indonesia: Universitas Gadjah Mada; 2018. p. 1–6
- Sakaki T, Limsuwat A, Illangasekare TH. A simple method for calibrating dielectric soil moisture sensors: Laboratory validation in sands. Vadose Zone J. 2011;10(2):526–31. doi: 10.2136/vzj2010.0036
- Qu JS, Fan J, Huang DC. The capacitive soil moisture sensor research. Appl Mechanics and Materials. 2014;584-586:2142–49. doi: 10.4028/www.scientific.net/AMM.584-586.2142
- Adla S, Rai NK, Karumanchi SH, Tripathi S, Disse M, Pande S. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors (Basel). 2020;20(2):363. doi: 10.3390/s20020363
- Smagin AV. Soil gas phase. Moskva, RF: Izdatel'stvo Moskovskogo universiteta; 2005. 301 s. (In Russ.)
- Karpachevskii LO, Voronin AD, Dmitriev EA, Stroganova MN, Shoba SA. Soil-biogeocenotic studies in forest biogeocenoses. Moskva, RF: Izdatel'stvo Moskovskogo universiteta; 1980. 160 s. (In Russ.)
- Kovda VA. Fundamentals of the doctrine of soils. Kniga 1. Moskva, RF: Nauka; 1973. 324 s. (In Russ.)
- Samouëlian A. Cousin I, Tabbagh A, Bruand A, Richard G. Electrical resistivity survey in soil science: a review. Soil Tillage Res. 2005;83(2):173–93. doi: 10.1016/j.still.2004.10.004
- McCarterWJ. The electrical resistivity characteristics of compacted clays. Geotechnique. 1984; 34(2):263–7. doi: 10.1680/geot.1984.34.2.263
- Zohra-Hadjadj F, Laredj N, Maliki M, Missoum H, Bendari K. Laboratory evaluation of soil geotechnical properties via electrical conductivity. Revista Facultad de Ingeniería. 2019;(90):101–12. doi: 10.17533/udea.redin.n90a11
- Lech M, Skutnik Z, Bajda M, Markowska-Lech K. Applications of electrical resistivity surveys in solving selected geotechnical and environmental problems. Appl Sci. 2020;10(7):2263. doi: 10.3390/app10072263
- Yang Y, Li K, Wang Y, Deng H, He J, Xiang Z et al. Using the Modified Resistivity–Porosity Cross Plot Method to Identify Formation Fluid Types in Tight Sandstone with Variable Water Salinity. Energies. 2021;14(19):2–14. doi: 10.3390/en14196335
- Oraby M. A non-Archie water saturation method for conventional reservoirs based on generalization of Passey TOC model for unconventional reservoirs. J Pet Explor Prod Technol. 2020;10(8):3295–308. doi: 10.1007/s13202-020-00945-x
- 25. Mohamad AM, Hamada GM. Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs. J of Geophysics and Engineering. 2017;14(6):1358–67. doi: 10.1088/1742-2140/aa805c
- 26. Choo H, Song J, Lee W, Lee C. Effects of clay fraction and pore water conductivity on electrical conductivity of sand-kaolinite mixed soils. J Pet Sci Eng. 2016;147:735–45. doi: 10.1016/j.petrol.2016.10.009
- Pozdniakov AI, Eliseev PI. Dependences of electrical resistivity on some properties of anthropogenically transformed light soils in agricultural landscapes of the humid zone. Vestn Orenburgskogo gos un-ta. 2012;(10):98–104. (In Russ.)
- 28. Pozdniakov AI, Eliseev PI, Pozdniakov LA. Electrophysical Approach to Evaluation of Some Elements of Cultivation and Fertility of Light Soils in the Humid Zone. 2015;(7):832–42. doi: 10.7868/S0032180X15050068. (In Russ.)
- 29. Egorov AM, Sudnik IuA, Gordeev AS, Pridorogin MV, Badin AE. Reflectivity of the soil in the visible and near infrared regions of optical radiation. Perspektivy nauki. 2018;(4):13–21. (In Russ.)
- Karavanova EI. Optical properties of soils and their nature. Moskva, RF: Izd-vo Moskovskogo un-ta; 2003. 153 s. (In Russ.)
- 31. Drobysh SV, Tsytron GS, Matychenkova OV, Bubnova TV. Spectrophotometric method for determining the content of humus in agro-soddy-podzolic soils. Pochvovedenie i agrokhimiia. 2013;(2):64–75. (In Russ.)
Адрес для корреспонденции:
г. Витебск, Республика Беларусь,
тел.: +375-29-715-08-38,
E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.,
профессор, доктор фармацевтических наук,
Бузук Г.Н.
Поступила 16.12.2021 г.