UDK 547. 314+548.11

DOI: https://doi.org/10.52540/2074-9457.2023.4.61

Скачать статью

 

E. G. Karimli1,2, İ. G. Mamedov6, V. N. Khrustalev3,4, M. Akkurt5, A. N. Khalilov6,7,  A. M. Mamedov8, Y. B. Kerimov1, S. J. Ibadullayeva2, A. N. Aleskerova2

 

CRYSTALLINE STRUCTURE AND HIRSHFELD SURFACE ANALYSIS  OF 7-((6-HYDROXY-2,5,5,8A-TETRAMETHYL-1,4,4A,5,6,7,8,8A OCTAHYDRONAPHTHALEN-1-YL)METHOXY)-2H-CHROMEN-2-ONE ISOLATED FROM FERULA PERSICA ROOTS: A NEW ENANTIOMORPH AT 100K

 

1Azerbaijan Medical University, Baku, Azerbaijan, 2Institute of Botany, Ministry of Science and Education of the Republic of Azerbaijan,  Baku, Azerbaijan,

3Peoples’ Friendship University of Russia, Moscow, Russian Federation, 4N. D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russian Federation, 

5Erciyes University, Kayseri, Turkey,  6Baku State University, Baku, Azerbaijan, 7Azerbaijan State Economic University, Baku, Azerbaijan, 

8Institute of Petrochemical Processes named after Academician Y. G. Mammadaliyev,  Baku, Azerbaijan

 

An ethanol extract was obtained from the underground part of Ferula persica Wild., collected during the fruiting phase, which, after the solvent removal, was chromatographed on a column with neutral “Alumina” (II degree of activity) and eluted with hexane, benzene, and their mixtures in a gradient of increasing polarity. As a result, 7-((6-Hydroxy-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methoxy)-2H-chromen-2-one (conferol - m.p. 137–138 ºC), was isolated. To confirm the structure, we used X-Ray, NMR 1H, 13C NMR, DEPT, COSY, HSQC, and HMBC methods. It has been previously mentioned about crystalline structure of the given compound C24H30O4, isolated from F. persica roots at room temperature. Unlike literature data in this study crystalline structure was determined with higher precision at 100 K (-173 ºC). The compound being investigated consists of octahydronaphthalene fragment, attached to the chromen-2-one fragment through an oxymethylene bridge. The title compound is a new enantiomorph of the one reported previously. In the crystal the molecules are connected by C—H···O hydrogen bonds along the c-axis forming the layers parallel to the (010) plane, while molecules are linked by O—H···O hydrogen bonds, which generate R22(6) motifs along the a-axis. The C—H···π and van der Waals interactions between these layers stabilize and maintain the structure. The Hirshfeld surface analysis indicates that the most important contribution to the crystal packing are from H···H (58,3%), O···H/H···O (21,8%) and C···H/H···C (19,7%) contacts.

Keywords: Ferula persica, extraction, chromatography, spectroscopy, crystalline structure, enantiomorph, O—H···O hydrogen bonds, C—H···π interactions, redetermination, Hirshfeld surface analysis.

 

ЛИТЕРАТУРА 

Флора Азербайджана : в 8-ми т. / Акад. наук АзССР. – Т. 6: Geraniaceae-Cornaceae. – Баку: Изд-во Акад. наук АзССР, 1955. – 540 с. 

Mir-Babayev, N. F. Plants of the Republic of Azerbaijan with Potential Medicinal Applications. Part III / N. F. Mir-Babayev,
P. J. Hough-ton // Pharmaceutical biology. ‒ 2002. – Vol. 40, N 1. – P. 16–22.

Ferulol and epi-Samarcandin, Two New Sesquiterpene Coumarins from Ferula sinaica / A. A. Ahmed [et al.]  // Natural Product Communications. ‒ 2007. ‒ Vol. 2, N 5. – P. 521–524. 

Sesquiterpene coumarins from Ferula samarkandica Korovin and their bioactivity / Kh. Kamoldinov [et al.] // Phytochemistry. ‒ 2021. ‒ Vol. 187. ‒ P. 112705. 

Iranshahi, M. A new Coumarin from Ferula persica / M. Iranshahi, Gh. Amin, A. A. Shafiee // Pharmaceutical Biology. ‒ 2004. ‒ Vol. 42, N 6. – P. 440–442.

Persian Asafoetida vs. Sagapenum: Challenges and Opportunities / A. Barzegar [et al.] // Research j. of pharmacognosy. ‒ 2020. ‒ Vol. 7, N 2. – P. 71–80.

Saidzhodzhaev, A. I. Conformation of the confugration of badrakemin and gummosin / A. I. Saidzhodzhaev, G. K.  Nikonov // Chemistry of natural compounds. ‒ 1974. ‒ Vol. 10, N 1. ‒ P. 12‒14.

Polar secondary metabolites of Ferula persica roots / M. Iranshahi [et al.] // Phytochemistry. ‒ 2008. ‒ Vol. 69, N 2. ‒ P. 473‒478.

Phenol derivatives from the roots of Ferula persica / Yu. B. Kerimov [et al.] // Chemistry of natural compounds. ‒ 1992. ‒ Vol. 28, N 5. ‒ P. 506.

Флавоноиды Ferula Persica / В. В. Стецков [и др.] // Химия природных соединений. ‒ 1980.  ‒ № 3. ‒ P. 415. 

Phytochemical Study of Methanolic Extract of Ferula persica Willd. Inflorescence and its Antinociceptive Effect in Male Mice / S. Nasri [et al.]  // J. of medicinal plants. ‒ 2018. ‒ Vol. 17, N 68. ‒ P. 136‒144.

Identification of  Antifungal Compounds from Ferula persica. var. persica / R. Mirjani [et al.] // Pharmaceutical Biology. ‒ 2005. ‒ Vol. 43, N 4. ‒ P. 293‒295.

Sattar, Z. Phytochemistry and pharmacology of Ferula persica Boiss.: A review / Z. Sattar, M. Iranshahi // Iran J. Basic.Med. Sci. ‒ 2017. ‒ Vol. 20, N 1. ‒ P. 1‒8.

Salehi, M. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists / M. Salehi, M. R. Naghavi, M. Bahmankar // Industr. crops and products. ‒ 2019. ‒ Vol. 139. ‒ P. 111511.

Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular docking studies of new imidazolyl hydrazone derivatives / M. Tapera [et al.]  // J. of molecular structure. ‒ 2022. ‒ Vol. 1269. ‒ P. 133816. 

 Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline / Y. Lakhrissi [et al.] // J. of molecular structure. ‒ 2022. ‒ Vol. 1259. ‒ P. 132683.

 Antioxidant and Antimicrobial Activity of Ferula Species Essential Oils and Plant Extracts and their Application as the Natural Food Preservatives / M. Daneshniya [et al.] // J. of natural products. ‒ 2021. ‒ Vol. 4, N 3. ‒ P. 83‒105.

 Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor / M. Chalkha [et al.] // J. of molecular structure. ‒ 2023. ‒ Vol. 1273. ‒ P. 134255.

 Synthesis, molecular and crystal structure of bis-(2,4-bis(trichloromethyl)) triazapentadieneato-1,3,5 Cu(II) and Ni(II) / A. M. Maharramov [et al.] // UNEC j. of eng. and applied sciences. ‒ 2021. – Vol. 1, N 1. ‒ P. 5‒11.

 Synthesis of dichlorodiazadiene derivatives based on o- and m-nitrobenzoic aldehyde / A. M. Maharramov [et al.] // UNEC j. of eng. and applied sciences. ‒ 2022. ‒ Vol. 2, N 1. ‒ P. 64‒74.

 Crystal structure and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile / F. N. Naghiyev  [et al.] // Acta Crystallographica. Section E, Crystallographic Communications. ‒ 2021. ‒ Vol. 77, N 2. ‒ P. 195–199.

 Crystal structure and Hirshfeld surface analysis of 7-[(6-hy­droxy-5,5,8a-tri­methyl-2-methylene­deca­hydro­naphthalen-1-yl)meth­oxy]-2H-chromen-2-one / E. G. Karimli [et al.] // Acta Crystallographica. Section E, Crystallographic  Communications. ‒ 2023. ‒ Vol. 79, N 9. ‒ P. 777‒781.

 Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-dimethyl-8-methylidene-2- oxododecahydrooxireno[20,30:6,7]naphtho[1,2- b]furan-6-yl (Z)-2-methylbut-2-enoate extracted from Ferula persica / E. G. Karimli [et al.] // Acta Crystallographica. Section E, Crystallographic Communications. ‒ 2023. ‒ Vol. 79, N 5. ‒ P. 474–479.

 Cremer, D. General definition of ring puckering coordinates / D. Cremer, J. A. Pople // J. of the Amer. chem. society. ‒ 1975. ‒ Vol. 97. ‒ P. 1354–1358.

 Crystal structure of obscurine: a natural product isolated from the stem bark of B. obscura / B. N. Lenta [et al.] // Acta Crystallographica. Section E, Crystallographic  Communications. ‒ 2015. ‒ Vol. 71, N 7. ‒ P. o457–o458.

 Ginderow, D. 3-(4-Bromophényl)-1-[4-(4-bromophényl)-3-butène-2-one-1-yl]-2-[3-(2,6,6-triméthyl-1-cyclohexène-1-yl)-2-propène-1-one-1-yl]-1,2,3,4,5,6,7,8-octa­hydro-8,8-diméthylnaphtalène / D. Ginderow // Acta crystallographica. Section C, Structural chem. ‒ 1996. ‒ Vol. 52, N 1. ‒ P. 256–259.

 Structure of the bromohydrin of an octahydronaphthalene derivative / G. D. Fallon [et al.] // Acta crystallographica. Section B, Structural science, crystal eng. and materials. ‒ 1992. ‒ Vol. 48, N 2. ‒ P. 227–230. 

 Ellis, D. D. (2R,3R,5R)-2-[(2R,3aS,6aR)-2,3,3a,4,5,6a-Hexa­hydro­furo­[2,3-b]­furan-2-yl]-5-isoprop­en­yl-2,3-di­methyl­cyclo­hexanone and (4aR,5S,7R)-5-isopropenyl-7,8,8-tri­methyl-2,3,4,4a,5,6,7,8-octa­hydro­naphthalene-4a-carbo­nitrile / D. D.  Ellis, A. L. Spek // Acta crystallographica. Section C, Structural chem. ‒ 2000. ‒ Vol. 56, N 9. ‒ P. 1173–1175.

 New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss / S. Bashir [et al.] // Phytochemistry Letters. ‒ 2014. ‒ Vol. 9. ‒ P. 46–50.

 Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals / J. Bernstein [et al.] // Angewandte Chemie  (Intern. ed. in Engl.). ‒ 1995. ‒ Vol. 34, N 15. ‒ P. 1555–1573.

 CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals / P. R. Spackman [et al.] // J. of applied crystallography. ‒ 2021. ‒ Vol. 54. ‒ P. 1006–1011.

 CrysAlis PRO [Electronic resource] // Rigaku. – Mode of access: https://www.rigaku.com/products/crystallography/crysalis. – Date of access: 04.05.2023. 

 Parsons, S. Precise absolute-structure determination in light-atom crystals / S. Parsons, H. Flack // Acta crystallographica. Section A, Foundations and advances. ‒ 2004. ‒ Vol. 60. ‒ P. 61.

 Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination / G. M. Sheldrick  // Acta crystallographica. Section A, Foundations and advances. ‒ 2015. ‒ Vol. 71, N 1. – P. 3–8. 

 Sheldrick, G. M. Crystal structure refinement with SHELXL / G. M. Sheldrick // Acta crystallographica. Section C, Structural chemistry. ‒ 2015. ‒ Vol. 71, N 1. ‒ P. 3–8.

 Farrugia, L. J. WinGXandORTEP for Windows: an update / L. J. Farrugia // J. of applied crystallography. ‒ 2012. ‒ Vol. 45. ‒ P. 849–854.

 Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond / A. L. Spek // Acta crystallographica. Section E, Crystallographic communications. ‒ 2020. ‒ Vol. 76, N 1. ‒ P. 1–11. 

 

REFERENCES 

1. Akademiia nauk Azerbaidzhanskoi SSR. Flora of Azerbaijan : v 8-mi t. T 6. Geraniaceae-Cornaceae. Baku, Azerbaidzhan: Izd-vo Akad nauk AzSSR; 1955. 540 s. (In Russ.)

2. Mir-Babayev NF, Houghton PJ. Plants of the Republic of Azerbaijan with Potential Medicinal Applications. Part III. Pharmaceutical biology. 2002;40(1):16–22. doi: 10.1076/phbi.40.1.16.5863

3. Ahmed AA, Mohamed AH, Ei-Rzek MA, Hegazy MEF. Ferulol and epi-Samarcandin, Two New Sesquiterpene Coumarins from Ferula sinaica. Nat Prod Commun. 2007;2(5):521–4. doi: 10.1177/1934578X0700200502 

4. Kamoldinov Kh, Li J, Eshbakova K, Sagdullaev S, Xu G, Zhou Y et al. Sesquiterpene coumarins from Ferula samarkandica Korovin and their bioactivity. Phytochemistry. 2021;187:112705. doi: 10.1016/j.phytochem. 2021.112705

5. Iranshahi M, Amin Gh, Shafiee AA. A new Coumarin from Ferula persica. Pharmaceutical Biology. 2004;42(6):440–2. doi: 10.1080/13880200490886102

6. Barzegar A, Salim MA, Badr P, Khosravi A, Hemmati S, Seradj H et al. Persian Asafoetida vs. Sagapenum: Challenges and Opportunities. Research J of Pharmacognosy. 2020;7(2):71–80. doi: 10.22127/RJP.2019.196452.1516

7. Saidzhodzhaev AI, Nikonov GK. Conformation of the confugration of badrakemin and gummosin. Chem Nat Compd. 1974;10(1):12‒4. doi: 10.1007/BF00568210

8. Iranshahi M, Mojarab M, Sadeghian H, Hanafi-Bojd MY, Schneider B. Polar secondary metabolites of Ferula persica roots. Phytochemistry. 2008;69(2):473‒8. doi: 10.1016/j.phytochem.2007.08.001

9. Kerimov YuB, Abyshev AZ, Serkerov SV, Isaev DI, Bairamov PB. Phenol derivatives from the roots of Ferula persica. Chem  Nat Compd. 1992;28(5):506. doi: 10.1007/BF00630666

10. Stetskov VV, Lugovskoi AI, Ban’kovskii AI, Pakaln DA. Flavonoids Ferula Persica. Khimiia prirodnykh soedinenii. 1980;(3):415. (In Russ.)

11. Nasri S, Nohooji MG, Amin G, Sharifi A, Borbor M, Shamohamadi F et al. Phytochemical Study of Methanolic Extract of Ferula persica Willd. Inflorescence and its Antinociceptive Effect in Male Mice. J Med Plants. 2018;17(68):136‒44

12. Mirjani R, Shahverdi A, Iranshahi M, Amin G, Shafiee A. Identification of Antifungal Compounds from Ferula persica. var. Persica. Pharm Biol. 2005;43(4):293‒5. doi: 10.1080/13880200590951658

13. Sattar Z, Iranshahi M. Phytochemistry and pharmacology of Ferula persica Boiss.: A review. Iran J Basic Med Sci. 2017;20(1):1‒8. doi: 10.22038/ijbms.2017.8085

14. Salehi M, Naghavi MR, Bahmankar M. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511. doi: 10.1016/j.indcrop.2019.111511

15. Tapera M, Kekeçmuhammed H, Tüzün B, Sarıpınar E, Koçyiğit ÜM, Yıldırım E et al. Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular docking studies of new imidazolyl hydrazone derivatives. J Mol Struct. 2022;1269:133816. doi: 10.1016/j.molstruc.2022.133816

16. Lakhrissi Y, Rboo M, Tuzun B, Hichor A, Anouor EH, Ounine K et al. Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J Mol Struct. 2022;1259:132683. doi: 10.1016/j.molstruc.2022.132683

17. Daneshniya M, Maleki MH, Mohammadi MA, Ahangarian K, Kondeskalaei VJ, Alavi H. Antioxidant and Antimicrobial Activity of Ferula Species Essential Oils and Plant Extracts and their Application as the Natural Food Preservatives.
J Nat Prod. 2021;4(3):83‒105

18. Chalkha M, Hassani AA, Nakkabi A, Tüzün B, Bakhouch M, Benjelloun AT et al. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J  Mol Struct. 2023;1273:134255. doi: 10.1016/j.molstruc.2022.134255

19. Maharramov AM, Shikhaliyev NG, Zeynalli NR, Niyazova AA, Garazade KhA, Shikhaliyeva IM. Synthesis, molecular and crystal structure of bis-(2,4-bis(trichloromethyl)) triazapentadieneato-1,3,5 Cu(II) and Ni(II). UNEC j. of eng. and applied sciences. 2021;1(1):5‒11 

20. Maharramov AM, Suleymanova GT, Qajar AM, Niyazova AA, Ahmadova NE, Shikhaliyeva IM et al. Synthesis of dichlorodiazadiene derivatives based on o- and m-nitrobenzoic aldehyde. UNEC j. of eng. and applied sciences. 2022;2(1):64‒74

21. Naghiyev FN, Grishina MM, Khrustalev VN, Khalilov AN, Akkurt M, Akobirshoeva A et al. Crystal structure and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile. Acta Crystallogr E Crystallogr  Commun. 2021;77(2):195–9. doi: 10.1107/S2056989021000785

22. Karimli EG, Khrustalev VN, Akkurt M, Khalilov AN, Bhattarai A, Aleskerova AN et al. Crystal structure and Hirshfeld surface analysis of 7-[(6-hy­droxy-5,5,8a-tri­methyl-2-methylene­deca­hydro­naphthalen-1-yl)meth­oxy]-2H-chromen-2-one. Acta Crystallogr E Crystallogr Commun. 2023;79(9):777‒81. doi: 10.1107/S2056989023006552

23. Karimli EG, Khrustalev VN, Kurasova MN, Akkurt M, Khalilov AN, Bhattarai A et al. Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-dimethyl-8-methylidene-2- oxododecahydrooxireno[20,30:6,7]naphtho[1,2- b]furan-6-yl (Z)-2-methylbut-2-enoate extracted from Ferula persica. Acta Crystallogr E Crystallogr Commun. 2023;79(5):474–9. doi: 10.1107/S205698902300333X

24. Cremer D, Pople JA. General definition of ring puckering coordinates. J Am Chem Soc. 1975;97:1354–8. doi: 10.1021/ja00839a011

25. Lenta BN, Chouna RJ, Neumann B, Stammier HG, Sewald N. Crystal structure of obscurine: a natural product isolated from the stem bark of B. Obscura. Acta Crystallogr E Crystallogr Commun. 2015;71(7):o457–8. doi: 10.1107/S2056989015010567

26. Ginderow D. 3-(4-Bromophényl)-1-[4-(4-bromophényl)-3-butène-2-one-1-yl]-2-[3-(2,6,6-triméthyl-1-cyclohexène-1-yl)-2-propène-1-one-1-yl]-1,2,3,4,5,6,7,8-octa­hydro-8,8-diméthylnaphtalène. Acta Crystallogr C Struct Chem. 1996;52(1):256–9. doi: 10.1107/S0108270195008985

27. Fallon GD, Gatehouse BM, Middleton S, Vanni SP. Structure of the bromohydrin of an octahydronaphthalene derivative. Acta Crystallogr B Struct Sci Cryst Eng Mater. 1992;48(2):227–30. doi: 10.1107/S0108768191013812

28. Ellis DD, Spek AL. (2R,3R,5R)-2-[(2R,3aS,6aR)-2,3,3a,4,5,6a-Hexa­hydro­furo­[2,3-b]­furan-2-yl]-5-isoprop­en­yl-2,3-di­methyl­cyclo­hexanone and (4aR,5S,7R)-5-isopropenyl-7,8,8-tri­methyl-2,3,4,4a,5,6,7,8-octa­hydro­naphthalene-4a-carbo­nitrile. Acta Crystallogr C Struct Chem. 2000;56(9):1173–5. doi: 10.1107/S0108270100008805

29. Bashir S, Alam M, Adhikari A, Shrestha RL, Yousuf S, Ahmad B et al. New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss. Phytochem Lett. 2014;9:46–50. doi: 10.1016/j.phytol.2014.04.009

30. Bernstein J, Davis RE, Shimoni L, Chang NL. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew Chem Int Ed Engl. 1995;34(15):1555–73. doi: 10.1002/anie.199515551

31. Spackman PR, Turner MJ, Mckinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021;54:1006–11. doi: 10.1107/S1600576721002910

32. CrysAlis PRO [Electronic resource]. Rigaku. Mode of access: https://www.rigaku.com/products/crystallography/crysalis. Date of access: 04.05.2023 (In Russ)

33. Parsons S, Flack H. Precise absolute-structure determination in light-atom crystals. Acta Crystallogr A Found Adv. 2004;60:61. doi: 10.1107/SO108767304098800

34. Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015;71(1):3–8. doi: 10.1107/S2053273314026370

35. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218

36. Farrugia LJ. Win GXandORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849–54. doi: 10.1107/S0021889812029111

37. Spek AL. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr E Crystallogr Commun. 2020;76(1):1–11. doi: 10.1107/S2056989019016244

 

Address for correspondence:

AZ1022, Azerbaijan,

Baku, st. Bakikhanova, 23,

Azerbaijan Medical University,

tel.: +994 51 313 81 77, +994 55 373 10 01,

e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.,

Karimli E. H.

Поступила 07.09.2023 г.