УДК 615.281:577.1

DOI: https://doi.org/10.52540/2074-9457.2024.1.56

Скачать статью

 

Т. В. Шаколо1, А. С. Критченков2, О. В. Курлюк1

ВЛИЯНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ НАНОЧАСТИЦ НА ОСНОВЕ БЕНЗОТИАЗОЛЬНЫХ ПРОИЗВОДНЫХ НИЗКОМОЛЕКУЛЯРНОГО И ВЫСОКОМОЛЕКУЛЯРНОГО ХИТОЗАНОВ НА ИХ АНТИБАКТЕРИАЛЬНУЮ АКТИВНОСТЬ

1Витебский государственный ордена Дружбы народов медицинский университет, г. Витебск, Республика Беларусь

2Российский университет дружбы народов, г. Москва, Российская Федерация

 

Целью работы было получение наночастиц бензотиазольных производных хитозана BCD-L-0,65 и BCD-H-0,65 и исследование их антибактериальной активности. Для получения наночастиц использовали метод ионотропного гелеобразования с триполифосфатом натрия. Изучение антибактериальной активности полученных систем проводили методом диффузии в агар в отношении двух штаммов патогенных микроорганизмов: Staphylococcus aureus (S. аureus) и Escherichia coli (E. сoli). Полученные наночастицы отличались величиной кажущегося гидродинамического диаметра, индекса полидисперсности и дзета-потенциала. Для статистической обработки результатов исследования применяли однофакторный дисперсионный анализ. Исследуемые наночастицы продемонстрировали выраженный антибактериальный эффект. Определено, что антибактериальный эффект бензотиазольных производных хитозана уменьшается с увеличением его молекулярной массы. Установлена зависимость антибактериальной активности наночастиц от размеров кажущегося гидродинамического диаметра (возрастает при уменьшении его размера) и дзета-потенциала (повышается при его увеличении).

Ключевые слова: хитозан, наночастицы, кажущийся гидродинамический диаметр, дзета-потенциал, антибактериальная активность.

 

SUMMARY

V. Shakolo, A. S. Kritchenkov, O. V. Kurlyuk

EFFECT OF PHYSICAL AND CHEMICAL PROPERTIES OF NANOPARTICLES BASED ON BENZOTHIAZOLE DERIVATIVES OF LOW-MOLECULAR AND HIGH-MOLECULAR CHITOSANS ON THEIR ANTIBACTERIAL ACTIVITY

The goal of the work was to obtain nanoparticles of benzothiazole derivatives of chitosan BCD-L-0.65 and BCD-H-0.65 and to study their antibacterial activity. To obtain nanoparticles, the method of ionotropic gelation with sodium tripolyphosphate was used. The study of antibacterial activity of the resulting systems was carried out using the agar diffusion method against two strains of pathogenic microorganisms: Staphylococcus aureus (S. aureus) and Escherichia coli
(E. coli). The resulting nanoparticles differed in the size of the apparent hydrodynamic diameter, polydispersity index and zeta potential. Single-factor analysis of variance was used for statistical processing of the results studied. The nanoparticles studied demonstrated a pronounced antibacterial effect. It was determined that antibacterial effect of benzothiazole derivatives of chitosan decreases with the increase in its molecular weight. Dependence of antibacterial activity of nanoparticles on the size of the apparent hydrodynamic diameter (increases with the decrease in its size) and zeta potential (increases with its increase) was established.

Keywords: chitosan, nanoparticles, apparent hydrodynamic diameter, zeta potential, antibacterial activity.

 

ЛИТЕРАТУРА

  1. Намазова-Баранова, Л. С. Антибиотикорезистентность в современном мире / Л. С. Намазова-Баранова, А. А Баранов // Педиатрическая фармакология. – 2017. – Т. 14, № 5. – С. 341–354.
  2. Андрюков, Б. Г. Перспективные стратегии поиска новых средств борьбы с инфекционными заболеваниями / Б. Г. Андрюков, Т. С. Запорожец, Н. Н. Беседнова // Антибиотики и химиотерапия. – 2018. – Т. 63, № 1/2. – С. 44–55.
  3. Области применения хитозана / Г. Г. Няникова [и др.] // Изв. С.-Петерб. гос. технолог. ин-та (технич. ун-та). – 2007. – № 2. – С. 20–26.
  4. Progress and prospects of nanomaterials against resistant bacteria / J. He [et al.] // J. of controlled release. – 2022. – Vol. 351. – Р. 301–323.
  5. Tang, K. Quinolone Antibiotics: Resistance and Therapy / К. Tang, H. Zhao // Infection and drug resistance. – 2023. – Vol. 16. – Р. 811–820.
  6. Antimicrobial and drug delivery aspect of environment-friendly polymer nanocomposites / A. Opálková Šišková [et al.] // Nanocomposites-Advanced Materials for Energy and Environmental Aspects / ed.: M. E. Khan, J. Aslam, C. Verma. – Boston: Woodhead Publishing, 2023. – P. 383–447.
  7. Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies / A. R. Egorov [et al.] // Molecules. – 2022. – Vol. 27, N 24. – P. 8865.
  8. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties / C. Duan [et al.] // J. of Bioresources and Bioproducts. – 2019. – Vol. 4, N 1. – Р. 11–21.
  9. The first selenium containing chitin and chitosan derivatives: Combined synthetic, catalytic and biological studies / A. R. Egorov [et al.] // Intern. j. of biological macromolecules. – 2022. – Vol. 209, Pt. B. – Р. 2175–2187.
  10. Chandrasekaran, M. Antibacterial Activity of Chitosan Nanoparticles: A Review / M. Chandrasekaran, K. D. Kim, S. C. Chun // Processes. – 2020. – Vol. 8, N 9. – Р. 1173.
  11. Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives / A. S. Kritchenkov [et al.] // Food packaging and shelf life. – 2020. – Vol. 25. – Р. 100534.
  12. Pedroso-Santana, S. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes / S. Pedroso-Santana, N. Fleitas-Salazar // Polymer intern. – 2020. – Vol. 69, N 5. – Р. 443–447.

13.Benzothiazole-based Compounds in Antibacterial Drug Discovery / M. Gjorgjieva [et al.] // Current medicinal chemistry. – 2018. – Vol. 25, N 38. – Р. 5218–5236.

  1. Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity / R. Colorado-Peralta [et al.] // Inorganics. – 2023. – Vol. 11, N 5. – Р. 185.
  2. Novel Benzothiazole Derivatives as Potential Anti-Quorum Sensing Agents for Managing Plant Bacterial Diseases: Synthesis, Antibacterial Activity Assessment, and SAR Study / P. L. Chu [et al.] // J. of agricultural and food chemistry. – 2023. – Vol. 71, N 17. – Р. 6525–6540.
  3. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug / [K. Zhao et al.] // Current drug delivery. – 2016. – Vol. 13, N 4. – Р. 494–499.
  4. Характеристика и оценка стабильности липосомальных препаратов [Электронный ресурс] / М. В. Дмитриева [и др.] // Разработка и регистрация лекарственных средств. – 2018. – № 3. – Режим доступа: https:www.pharmjournal.ru/jour/article/viewFile/604/599. – Дата доступа: 18.12.2023.
  5. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects / Т. V. Shakola [et al.] // Polymers. – 2023. – Vol. 15, N 16. – Р. 3469.
  6. Потенциал электрокинетический (дзета-потенциал) частиц в коллоидных системах. Оптические методы измерения : ГОСТ Р 8.887-2015. – Введ. 2016–06–01. – Москва: Стандартинформ, 2019. – 16 с.

REFERENCES

  1. Namazova-Baranova LS, Baranov AA. Antibiotic resistance in the modern world. Pediatricheskaia farmakologiia. 2017;14(5):341–54. doi: 10.15690/pf.v14i5.1782. (In Russ.)
  2. Andriukov BG, Zaporozhets TS, Besednova NN. Promising strategies for finding new means to combat infectious diseases. Antibiotiki i khimioterapiia. 2018;63(1-2):44–55. (In Russ.)
  3. Nianikova GG, Mametnabiev TE, Kalinkin IP, Gepetskaia MV, Komissarchik SM, Eldinova EIu. Areas of application of chitosan. Izv S-Peterb gos tekhnolog in-ta (tekhnich un-ta). 2007;(2):20–6. (In Russ.)
  4. He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release. 2022;351:301–23. doi: 10.1016/j.jconrel.2022.09.030
  5. Tang K, Zhao H. Quinolone Antibiotics: Resistance and Therapy. Infect Drug Resist. 2023;16:811–20. doi: 10.2147/IDR.S401663
  6. Opálková Šišková A, Andicsová AE, Duale K, Zawidlak-Węgrzyńska B, Rydz J. Antimicrobial and drug delivery aspect of environment-friendly polymer nanocomposites. In: Khan ME, Aslam J, Verma C, editors. Nanocomposites-Advanced Materials for Energy and Environmental Aspects. Boston, UK: Woodhead Publishing; 2023. p. 383–447
  7. Egorov AR, Kurliuk AV, Rubanik VV, Kirichuk AA, Khubiev O, Golubev R et al. Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies. Molecules. 2022;27(24):8865. doi: 10.3390/molecules27248865
  8. Duan C, Meng X, Meng J, Khan IH, Dai L, Khan A et al. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J of Bioresources and Bioproducts. 2019;4(1):11–21. doi: 10.21967/jbb.v4i1.189
  9. Egorov AR, Khubiev O, Rubanik VV, Rubanik Jr VV, Lobanov NN, Savilov SV et al. The first selenium containing chitin and chitosan derivatives: Combined synthetic, catalytic and biological studies. Int J Biol Macromol. 2022;209(Pt B):2175–87. doi: 10.1016/j.ijbiomac.2022.04.199
  10. Chandrasekaran M, Kim KD, Chun SC. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes. 2020;8(9):1173. doi: 10.3390/pr8091173
  11. Kritchenkov AS, Egorov AR, Volkova OV, Zabodalova LA, Suchkova EP, Yagafarov NZ et al. Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Packag Shelf Life. 2020;25:100534. doi: 10.1016/j.fpsl.2020.100534
  12. Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–7. doi: 10.1002/pi.5970
  13. Gjorgjieva, M, Tomašič T, Kikelj D, Mašič LP. Benzothiazole-based Compounds in Antibacterial Drug Discovery. Curr Med Chem. 2018;25(38):5218–36. doi: 10.2174/0929867324666171009103327
  14. Colorado-Peralta R, Olivares-Romero JL, Rosete-Luna S, Garcia-Barradas O, Reyes-Marquez V, Hernandez-Romero D et al. Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity. Inorganics. 2023;11(5):185. doi: 10.3390/inorganics11050185
  15. Chu PL, Feng YM, Long ZQ, Xiao WL, Zhou X, Qi PY et al. Novel Benzothiazole Derivatives as Potential Anti-Quorum Sensing Agents for Managing Plant Bacterial Diseases: Synthesis, Antibacterial Activity Assessment, and SAR Study. J Agric Food Chem. 2023;71(17):6525–40. doi: 10.1021/acs.jafc.2c07810
  16. Zhao K, Li D, Shi C, Ma X, Rong G, Kang H et al. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. Curr Drug Deliv. 2016;13(4):494–9. doi: 10.2174/156720181304160521004609
  17. Dmitrieva MV, Timofeeva TA, Oborotova NA, Krasniuk II, Stepanova OI. Characterization and stability assessment of liposomal preparations [Elektronnyi resurs]. Razrabotka i registratsiia lekarstvennykh sredstv. 2018;(3). Rezhim dostupa: https:www.pharmjournal.ru/jour/article/viewFile/604/599. Data dostupa: 18.12.2023. (In Russ.)
  18. Shakola TV, Rubanik VV, Rubanik Jr VV, Kurliuk AV, Kirichuk AA, Tskhovrebov AG et al. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects. Polymers (Basel). 2023;15(16):3469. doi: 10.3390/polym15163469
  19. Electrokinetic potential (zeta potential) of particles in colloidal systems. Optical measurement methods : GOST R 8.887-2015. Vved 2016–06–01. Moskva, RF: Standartinform; 2019. 16 s. (In Russ.)

Адрес для корреспонденции:

210009, Республика Беларусь,

г. Витебск, пр. Фрунзе, 27,

УО «Витебский государственный ордена

Дружбы народов медицинский университет»,

кафедра общей и клинической фармакологии

с курсом ФПК и ПК,

тел. раб.: 8 (0212) 58 13 87,

Шаколо Т. В.

Поступила 09.01.2024 г.