УДК 631.413
DOI: https://doi.org/10.52540/2074-9457.2024.2.31
Скачать статью

 

Г. Н. Бузук

ОПРЕДЕЛЕНИЕ ТРОФНОСТИ ПОЧВ ЭЛЕКТРОФИЗИЧЕСКИМ МЕТОДОМ. СООБЩЕНИЕ 7. НОВОЕ В ТЕХНИКЕ ИЗМЕРЕНИЙ И РАСЧЕТОВ

г. Витебск, Республика Беларусь

 

Целью настоящей работы явилась оптимизация техники измерений и расчетов удельного электрического сопротивления (УЭС) почвы при использовании квадратной установки. Установлены существенные различия в результатах определения УЭС при использовании как голых (неизолированных), так и изолированных (точечных) электродов, а также влияние глубины погружения электродов в исследуемый субстрат.

Предложен способ расчета УЭС для нулевого заглубления электродов, основанного на измерении УЭС в одной точке при 2–4 последовательных заглублениях электродов.

Показана возможность линеаризации зависимости УЭС от объемной влажности почвы путем ее обратного преобразования ((1 – θ или θ-1). Установлена тесная связь между углом наклона регрессии для θ-1 – УЭС и содержанием в почве солей (электролитов) на фоне различного влагосодержания.

Методика может использоваться для косвенной оценки трофности почв в местах произрастания или выращивания лекарственных растений.

Ключевые слова: геофизические методы, электрофизика почв, квадратная установка, электросопротивление, объемная влажность.

 

SUMMARY

N. Buzuk

DETERMINATION OF SOIL TROPHIС STATE BY ELECTROPHYSICAL METHOD. REPORT 7. NOVELTIES IN MEASUREMENT AND CALCULATION TECHNIQUES

The aim of this work was to optimize measurement and calculation techniques of specific electrical resistance (SER) of the soil using a square installation. Significant differences were established in the SER determination results when using both bare (uninsulated) and insulated (pointed) electrodes as well as the effect of electrode immersion depth into the substrate studied.

A method for calculating SER for zero electrode embedding was proposed based on measuring the SER at one point with 2-4 successive electrode embeddings.

Possibility of linearizing the SER dependence on soil volumetric moisture by its inverse transformation ((1 – θ or θ-1) was shown. Close relationship between the slope of the regression for θ-1 - SER and the salt (electrolyte) content in the soil against various moisture content was established.

The methodology can be used for indirect assessment of soil trophic state in the areas of medicinal plants growth or cultivation.

Keywords: geophysical methods, soil electrophysics, square installation, electrical resistance, volumetric moisture.

 

ЛИТЕРАТУРА

  1. Аветов, Н. А. Понятие трофности в связи с антропогенной эвтрофикацией верховых болот Ханты-Мансийского Приобья / Н. А. Аветов, Е. А. Шишконакова // Бюллетень Почвенного института им. В. В. Докучаева. – 2013. – № 71. – С. 36–51.
  2. Поздняков, А. И. Электрические параметры почв и почвообразование / А. И. Поздняков // Почвоведение. – 2008. – № 10. – С. 1188–1197.
  3. Бузук, Г. Н. 2D непараметрическая (kernel) регрессия в анализе растительных сообществ с помощью экологических шкал H. Ellenberg / Г. Н.Бузук // Вестн. фармации. – 2023. – № 3. – С. 19–30.
  4. Бузук, Г. Н. Определение экологического пространства растительных сообществ методом идеального индикатора с помощью объединенных европейских экологических шкал H. Ellenberg / Г. Н.Бузук // Вестн. фармации. – 2023. – № 2. – С. 72–81.
  5. Экологическая оценка кормовых угодий по растительному покрову / Л. Г. Раменский [и др.]. – Москва: Гос. изд-во сельхоз. лит-ры, 1956. – 472 с.
  6. Цыганов, Д. Н. Фитоиндикация экологических режимов в подзоне хвойно-широколиственных лесов / Д. Н. Цыганов. – Москва: Наука, 1983. – 196 с.
  7. Didukh, Ya. P. The ecological scales for the species of Ukrainian flora and their use in synphytoindication / Ya. P. Didukh. – Kyiv: Phytosociocentre, 2011. – 176 p.
  8. Indicator values of vascular plants / H. Ellenberg [et al.] // Indicator Values of Plants in Central Europe (German). – Göttingen: Erich Goltze, 2001. – P. 9–166.
  9. Flora Indicativa: Ecological indicator Values and Biological Traits of the Flora of Swiss and the Alps / ed. E. Landolt. – Bern: Haupt, 2010. – 230 s.
  10. Ellenberg type indicator values for European vascular plant species / L. Tichý [et al.] // J. of vegetation science. – 2023. – Vol. 34, N 1. – P. 1–13.
  11. Поздняков, А. И. Электрофизика почв / А. И. Поздняков, А. Д. Позднякова. – Москва-Дмитров: Изд-во Московского гос. ун-та, 2004. – 48 с.
  12. Поздняков, А. И. Электрофизические свойства некоторых почв / А. И. Поздняков, Ч. Г. Гюлалыев. – Москва-Баку: Адильоглы, 2004. – 240 с.
  13. Поздняков, А. И. Полевая электрофизика в почвоведении, мелиорации и земледелии / А. И. Поздняков, Н. Г. Ковалев, А. Д.Позднякова. – Тверь: ЧуДо, 2002. – 257 с.
  14. Вадюнина, А. Ф. Методы исследования физических свойств почв / А. Ф. Вадюнина, З. А.Корчагина. – Москва: Агропромиздат, 1986. – 416 с.
  15. Relationship between apparent electrical conductivity and soil physical properties in a Malaysian paddy field / A. Gholizadeh [et al.] // Archives of agronomy and soil science. – 2012. – Vol. 58, N 2. – P. 155–168.
  16. Corwin, D. L. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study / D. L. Corwin, S. M. Lesch // Computers and electronics in agriculture. – 2005. – Vol. 46, N 1/3. – P. 135–152.
  17. Lund, E. D. Practical applications of soil electrical conductivity mapping / E. D. Lund, C. D. Christy, P. E. Drummond // Precision agriculture / ed. J. V. Stafford. – Sheffield: Sheffield Academic Press, 1999. – P. 771–779.
  18. Friedman, S. P. Soil properties influencing apparent electrical conductivity: a review / S. P. Friedman // Computers and electronics in agriculture. – 2005. – Vol. 46, N 1/3. – P. 45–70.
  19. Electrical resistivity survey in soil science: a review / A. Samouëlian [et al.] // Soil and Tillage research. – 2005. – Vol. 83, N 2. – P. 173–193.
  20. Reynolds, J. M. An introduction to applied and environmental geophysics / J. M. Reynolds. – Chichester: John Wiley & Sons, 2011. – 696 p.
  21. Handbook of agricultural geophysics / ed.: B. J. Allred, J. J. Daniels, M. R. Ehsani. – Boca Raton: Taylor & Francis Group, 2008. – 410 p.
  22. Corwin, D. L. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods / D. L. Corwin // Handbook of Agricultural Geophysics / ed.: B. J. Allred, J. J. Daniels, M. R. Ehsani. – New York: CRC Press, 2008. – P. 17– 44.
  23. Soil sensors and plant wearables for smart and precision agriculture / H. Yin [et al.] // Advanced materials. – 2021. – Vol. 33, N 20. – P. e2007764.
  24. Monteiro, A. Precision agriculture for crop and livestock farming—Brief review / A. Monteiro, S. Santos, P. Gonçalves // Animals. – 2021. – Vol. 11, N 8. – P. 2345.
  25. Heiniger, R. W. Using soil electrical conductivity to improve nutrient management / R. W. Heiniger, R. G. McBride, D. E. Clay // Agronomy j. – 2003. – Vol. 95, N 3. – P. 508–519.
  26. Якушев, В. В. Точное земледелие: теория и практика / В. В. Якушев. – Санкт-Петербург: Агрофизический науч.-исслед. ин-т, 2016. – 364 с.
  27. Wenner, F. A method of measuring earth resistivity / F. Wenner // Bulletin of the Bureau of Standards. – Washington: Government Printing Office, 1916. – Vol. 12. – P. 469–478.
  28. Soil Resistivity Information and Field Testing. – Mode of access: https://www.easypower.com/resources/article/soil-resistivity-information-and-field-testing. – Date of access: 10.06.2024.
  29. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 1. Устройство и лабораторная методика / Г. Н. Бузук // Вестн. фармации. – 2021. – № 3. – С. 32–40.
  30. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 2. Конструкция электродов и способ расчета геометрического коэффициента / Г. Н. Бузук // Вестн. фармации. – 2021. – № 4. – С. 46–52.
  31. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 3. Корректировка влияния влажности / Г. Н. Бузук // Вестн. фармации. – 2021. – № 4. – С. 74–84.
  32. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 4. Почвенная матрица / Г. Н. Бузук // Вестн. фармации. – 2022. – № 1. – С. 56–62.
  33. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 5. Полевые испытания / Г. Н. Бузук // Вестн. фармации. – 2022. – № 2. – С. 65–76.
  34. Бузук, Г. Н. Определение трофности почв электрофизическим методом. Сообщение 6. Квадратная установка, конструкция электродов и способ расчета геометрического коэффициента / Г. Н. Бузук // Вестн. фармации. – 2022. – № 3. – С. 23–29.
  35. Habberjam, G. M. The use of a square configuration in resistivity prospecting / G. M. Habberjam, G. E. Watkins // Geophysical prospecting. – 1967. – Vol. 15, N 3. – P. 445–467.
  36. Habberjam, G. M. The effects of anisotropy on square array resistivity measurements / G. M. Habberjam // Geophysical prospecting. – 1972. – Vol. 20, N 2. – P. 249–266.
  37. Moreira, S. S. A comparative evaluation of vertical fractures using different azimuthal electrical resistivity survey arrays / S. S. Moreira, L. A. P. Bacellar, P. R. A. Aranha // Near Surface Geophysics. – 2019. – Vol. 17, N 4. – P. 345–357.
  38. Comparison of three small-scale devices for the investigation of the electrical conductivity/resistivity of swelling and other clays / S. Kaufhold [et al.] // Clays and clay minerals. – 2014. – Vol. 62. – P. 1–12.
  39. Laboratory evaluation of soil geotechnical properties via electrical conductivity / F. Zohra-Hadjadj [et al.] // Revista Facultad de Ingeniería Universidad de Antioquia. – 2019. – N 90. – P. 101–112.
  40. Correlation between electrical conducti-vity in saturated paste extracts and different diluted extracts (1/2.5, 1/5) of coarse-textured soils / D. Bakhti [et al.] // J. of agriculture and applied biology. – 2024. – Vol. 5, N 1. – P. 18–34.
  41. Kargas, G. The effect of soil texture on the conversion factor of 1: 5 soil/water extract electrical conductivity (EC 1: 5) to soil saturated paste extract electrical conductivity (ECe) / G. Kargas, P. Londra, K. Sotirakoglou // Water. – 2022. – Vol. 14, N 4. – P. 642.
  42. Smagin, A. EC conversion for 1: 5 extracts and standard saturated soil–water pastes in the assessment of arid land salinization: Classical methodologies revisited / A. Smagin, A. Kacimov, N. Sadovnikova // J. of the saudi soc. of agr. sciences. – 2024. – Vol. 23, N 4. – P. 277–288.
  43. Spiteri, K. Estimating the electrical conductivity of a saturated soil paste extract (ECe) from 1: 1 (EC1: 1), 1: 2 (EC1: 2) and 1: 5 (EC1: 5) soil: water suspension ratios, in calcareous soils from the Mediterranean Islands of Malta / K. Spiteri, A. T. Sacco // Communications in soil science and plant analysis. – 2024. – Vol. 55, N 9. – P. 1302–1312.
  44. Effects of equilibrium time on electrical conductivity measurements using soil-water extracts and soil saturated paste / B. S. Seo [et al.] // Korean j. of soil science and fertilizer. – 2021. – Vol. 54, N 2. – P. 257–263.
  45. Kargas, G. Comparison of soil EC values from methods based on 1: 1 and 1: 5 soil to water ratios and ECe from saturated paste extract based method / G. Kargas, P. Londra, A. Sgoubopoulou // Water. – 2020. – Vol. 12, N 4. – P. 1010.
  46. Edwards, L. S. A modified pseudosection for resistivity and IP / L. S. Edwards // Geophy-sics. – 1977. – Vol. 42, N 5. – P. 1020–1036.
  47. Szalai, S. Depth of investigation and vertical resolution of surface geoelectric arrays / S. Szalai, A. Novák, L. Szarka // J. of environmental & engineering geophysics. – 2009. – Vol. 14, N 1. – P. 15–23.

REFERENCES

  1. Avetov NA, Shishkonakova EA. The concept of trophicity in connection with anthropogenic eutrophication of raised bogs of the Khanty-Mansiysk Ob region. Biulleten' Pochvennogo instituta im. V. V. Dokuchaeva. 2013;(71):36 – 51. (In Russ.)
  2. Pozdniakov AI. Electrical parameters of soils and soil formation. Pochvovedenie. 2008;(10):1188–97. (In Russ.)
  3. Buzuk GN. 2D nonparametric (kernel) regression in the analysis of plant communities using ecological scales H. Ellenberg. Vestn farmatsii. 2023;(3):19–30. doi: 10.52540/2074-9457.2023.3.19. (In Russ.)
  4. Buzuk GN. Determination of the ecological space of plant communities by the ideal indicator method using the combined European ecological scales H. Ellenberg. Vestn farmatsii. 2023;(2):72–81. doi: 10.52540/2074-9457.2023.2.72. (In Russ.)
  5. Ramenskii LG, Tsatsenkin IA, Chizhikov ON, Antipin NA. Ecological assessment of forage lands by vegetation cover. Moskva, RF: Gos izd-vo sel'khoz lit-ry; 1956. 472 s. (In Russ.)
  6. Tsyganov DN. Phytoindication of ecological regimes in the subzone of coniferous-broadleaf forests. Moskva, RF: Nauka; 1983. 196 s. (In Russ.)
  7. Didukh YaP. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv, Ukraine: Phytosociocentre; 2011. 176 p. (In English)
  8. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W. Indicator values of vascular plants. In: Indicator Values of Plants in Central Europe (German). Göttingen, Germany: Erich Goltze; 2001. p. 9-166
  9. Landolt E, editor. Flora Indicativa: Ecological indicator Values and Biological Traits of the Flora of Swiss and the Alps. Bern, Germany: Haupt; 2010. 230 s
  10. Tichý L, Axmanova I, Dengler J, Guarino R, Jansen F, Midolo G et al. Ellenberg type indicator values for European vascular plant species. J Veg Sci. 2023;34(1):1–13. doi: 10.1111/jvs.13168
  11. Pozdniakov AI, Pozdniakova AD. Electrophysics of soils. Moskva-Dmitrov, RF: Izd-vo Moskovskogo gos un-ta; 2004. 48 s. (In Russ.)
  12. Pozdniakov AI, Giulalyev ChG. Electrophysical properties of some soils. Moskva-Baku, RF, Azerbaidzhan: Adil'ogly; 2004. 240 s. (In Russ.)
  13. Pozdniakov AI, Kovalev NG, Pozdniakova AD. Field electrophysics in soil science, melioration and agriculture. Tver', RF: ChuDo; 2002. 257 s. (In Russ.)
  14. Vadiunina AF, Korchagina ZA. Methods of studying the physical properties of soils. Moskva, RF: Agropromizdat; 1986. 416 s. (In Russ.)
  15. Gholizadeh A, Amin MSM, Anuar AR, Wayayok A. Relationship between apparent electrical conductivity and soil physical properties in a Malaysian paddy field. Arch Agron Soil Sci. 2012;58(2):155–68. doi: 10.1080/03650340.2010.509132
  16. Corwin DL, Lesch SM. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Comput Electron Agric. 2005;46(1-3):135–52. doi: 10.1016/j.compag.2004.11.003
  17. Lund ED, Christy CD, Drummond PE. Practical applications of soil electrical conductivity mapping. In: Stafford JV, editor. Precision agriculture. Sheffield, Great Britain: Sheffield Academic Press; 1999. p. 771–9
  18. Friedman SP. Soil properties influencing apparent electrical conductivity: a review. Comput Electron Agric. 2005;46(1-3):45–70. doi: 10.1016/j.compag.2004.11.001
  19. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G. Electrical resistivity survey in soil science: a review. Soil Tillage Res. 2005;83(2):173–93. doi: 10.1016/j.still.2004.10.004
  20. Reynolds JM. An introduction to applied and environmental geophysics. Chichester, UK: John Wiley & Sons; 2011. 696 s
  21. Allred BJ, Daniels JJ, Ehsani MR, editors. Handbook of agricultural geophysics. Boca Raton, USA: Taylor & Francis Group; 2008. 410 s
  22. Corwin DL. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods. In: Allred BJ, Daniels JJ, Ehsani MR, editors. Handbook of Agricultural Geophysics. New York, USA: CRC Press; 2008. p. 17–44
  23. Yin H, Cao Y, Marelli B, Zeng X, Mason AJ, Cao C. Soil sensors and plant wearables for smart and precision agriculture. Adv Mater. 2021;33(20):e2007764. doi: 10.1002/adma.202007764
  24. Monteiro A, Santos S, Gonçalves P. Precision agriculture for crop and livestock farming—Brief review. Animals (Basel). 2021;11(8):2345. doi: 10.3390/ani11082345
  25. Heiniger RW, McBride RG, Clay DE. Using soil electrical conductivity to improve nutrient management. Agron J. 2003;95(3):508–19. doi: 10.2134/agronj2003.0508
  26. Iakushev VV. Precision farming: theory and practice. Sankt-Peterburg, RF: Agrofizicheskii nauch-issled in-t; 2016. 364 s. (In Russ.)
  27. Wenner F. A method of measuring earth resistivity. Bulletin of the Bureau of Standards. Washington, USA: Government Printing Office; 1916;12:469–78
  28. Soil Resistivity Information and Field Testing. Mode of access: https://www.easypower.com/resources/article/soil-resistivity-information-and-field-testing. Date of access: 10.06.2024
  29. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 1. Device and laboratory technique. Vestn farmatsii. 2021;(3):32–40. doi: 10.52540/2074-9457.2021.3.32. (In Russ.)
  30. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 2. The design of the electrodes and the method of calculating the geometric coefficient. Vestn farmatsii. 2021;(4):46-52. doi: 10.52540/2074-9457.2021.4.46. (In Russ.)
  31. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 3. Humidity correction. Vestn farmatsii. 2021;(4):74–84. doi: 10.52540/2074-9457.2021.4.74. (In Russ.)
  32. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 4. Soil matrix. Vestn farmatsii. 2022;(1):56–62. doi: 10.52540/2074-9457.2022.1.56. (In Russ.)
  33. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 5. Field trials. Vestn farmatsii. 2022;(2):65–76. doi: 10.52540/2074-9457.2022.2.65. (In Russ.)
  34. Buzuk GN. Determination of soil trophicity by electrophysical method. Message 6. Square installation, electrode design and method of calculating the geometric coefficient. Vestn farmatsii. 2022;(3):23–29. doi: 10.52540/2074-9457.2022.3.23. (In Russ.)
  35. Habberjam GM, Watkins GE. The use of a square configuration in resistivity prospecting. Geophys Prospect. 1967;15(3):445–67. doi: 10.1111/j.1365-2478.1967.tb01798.x
  36. Habberjam GM. The effects of anisotropy on square array resistivity measurements. Geophys Prospect. 1972;20(2):249–66. doi: 10.1111/j.1365-2478.1972.tb00631.x
  37. Moreira SS, Bacellar LAP, Aranha PRA. A comparative evaluation of vertical fractures using different azimuthal electrical resistivity survey arrays. Near Surf Geophys. 2019;17(4):345–57. doi: 10.1002/nsg.12047
  38. Kaufhold S, Grissemann C, Dohrmann R, Klinkenberg M, DecherA. Comparison of three small-scale devices for the investigation of the electrical conductivity/resistivity of swelling and other clays. Clays Clay Miner. 2014;62:1–12. doi: 10.1346/CCMN.2014.0620101
  39. Zohra-Hadjadj F, Laredj N, Maliki M, Missoum H, Bendani K. Laboratory evaluation of soil geotechnical properties via electrical conductivity. Revista Facultad de Ingeniería Universidad de Antioquia. 2019;(90):101–12. doi: 10.17533/udea.redin.n90a11
  40. Bakhti D, Halilat MT, Khadoumi A, Oustani M, Zemour H, Belhouadjeb FA. Correlation between electrical conductivity in saturated paste extracts and different diluted extracts (1/2.5, 1/5) of coarse-textured soils. J of agriculture and applied biology. 2024;5(1):18–34. doi: 10.11594/jaab.05.01.02
  41. Kargas G, Londra P, Sotirakoglou K. The effect of soil texture on the conversion factor of 1: 5 soil/water extract electrical conductivity (EC 1: 5) to soil saturated paste extract electrical conductivity (ECe). Water (Basel). 2022;14(4):642. doi: 10.3390/w14040642
  42. Smagin A, Kacimov A, Sadovnikova N. EC conversion for 1: 5 extracts and standard saturated soil–water pastes in the assessment of arid land salinization: Classical methodologies revisited. J of the saudi society of agricultural sciences. 2024;23(4):277–88. doi: 10.1016/j.jssas.2023.12.005
  43. Spiteri K, Sacco AT. Estimating the electrical conductivity of a saturated soil paste extract (ECe) from 1: 1 (EC1: 1), 1: 2 (EC1: 2) and 1: 5 (EC1: 5) soil: water suspension ratios, in calcareous soils from the Mediterranean Islands of Malta. Commun Soil Sci Plant Anal. 2024;55(9):1302–12. doi: 10.1080/00103624.2024.2304636
  44. Seo BS, Lee KS, Leong YJ, Choi WJ. Effects of equilibrium time on electrical conductivity measurements using soil-water extracts and soil saturated paste. Korean j. of soil science and fertilizer. 2021;54(2):257–63. doi: 10.7745/KJSSF.2021.54.2.257
  45. Kargas G, Londra P, Sgoubopoulou A. Comparison of soil EC values from methods based on 1: 1 and 1: 5 soil to water ratios and ECe from saturated paste extract based method. Water (Basel). 2020;12(4):1010. doi: 10.3390/w12041010
  46. Edwards LS. A modified pseudosection for resistivity and IP. Geophysics. 1977;42(5):1020–36. doi: 10.1190/1.1440762
  47. Szalai S, Novák A, Szarka L. Depth of investigation and vertical resolution of surface geoelectric arrays. J Environ Eng Geophys. 2009;14(1):15–23. doi: 10.2113/JEEG14.1.15

Адрес для корреспонденции:

г. Витебск, Республика Беларусь,

тел. +375-29-715-08-38,

e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.,

профессор, доктор фармацевтических наук,

Бузук Г. Н.

Поступила 17.06.2024 г.