UDC547.781.1   
DOI: https://doi.org/10.52540/2074-9457.2024.2.51
Скачать статью

 

S. Оrujova1, A. M. Mammadov1,2, R. A. Jafarova1, A. H. Talybov1, F. Аhmadbayova1, S. A. Muradova3, E. H. Kerimli4

ANTIMICROBIAL ACTIVITY AND THEORETICAL CALCULATIONS OF 2-(4-METHOXYPHENYL)-4,5-DIPHENYL-1-(4-(PHENYLDIAZENYL)PHENYL)-1H-IMIDAZOLE

 

1Academician Y.H. Mammadaliyev Institute of Petrochemical Processes of the Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan

2Department of Chemical Engineering, Khazar University, Baku, Azerbaijan

3Department of Medical Microbiology and Immunology, Azerbaijan Medical University,   Baku, Azerbaijan

4Department of Pharmacognosy, Azerbaijan Medical University, Baku, Azerbaijan

 

In this work 2-(4-methoxyphenyl)-4,5-diphenyl-1-(4-(phenyldiazenyl)phenyl)-1H-imidazole was synthesized using a single-step method under microwave conditions with the presence and absence of a catalyst. The structure of the synthesized compound was analyzed and confirmed using 1H, 13C NMR and IR spectroscopy methods. Ionic liquid catalysts (1,4 dimethylpiperazine dihydrosulfate, N-methylpyrrolidone perchlorate, 1-butyl-3-methylimidazolehydrosulfate) were used in the process of synthesis, comparison of their effect on the reaction was made. The structure of the synthesized compound has been analyzed using 1H, 13C NMR and IR spectroscopy methods. Theoretical calculations of compounds have been made using the density functional theory (DFT/B3LYP) method with the basis set 6-31G(d,p). The geometry of the structure was optimized, bond lengths and angle degrees were set, important quantum-chemical parameters such as HOMO, LUMO orbitals, reactivity, stability, electrophilicity, electronegativity, chemical softness and chemical hardness were calculated. It was determined that the compound has high stability (∆E = 2.662 eV) and high biological activity (ω = 5.670 eV). The sample effect regarding Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Bacillus anthracoides bacteria and Candida albicans fungus was studied.

Keywords: Imidazole, synthesis, microwave, ionic liquid catalysts, antimicrobial activity, theoretical calculations, stability.

 

РЕЗЮМЕ

Н. С. Оруджева, А. М. Маммадов, Р. А. Жафарова, А. Х. Талибов, С. Ф. Ахмедбекова, С. А. Мурадова, Э. Х. Керимли

АНТИМИКРОБНАЯ АКТИВНОСТЬ И ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ

2-(4-МЕТОКСИФЕНИЛ)-4,5-ДИФЕНИЛ-1-(4-(ФЕНИЛДИАЗЕНИЛ)ФЕНИЛ)-1Н-ИМИДАЗОЛА

В настоящей работе представлен одностадийный синтез 2-(4-метоксифенил)-4,5-дифенил-1-(4-(фенилдиазенил)фенил)-1Н-имидазола в микроволновых условиях в присутствии катализатора и без его присутствия. Структура синтезированного соединения проанализирована и подтверждена методами 1Н, 13С ЯМР и ИК-спектроскопии. В процессе синтеза использовали ионно-жидкие катализаторы (1,4-диметилпиперазин дигидросульфат, N-метилпирролидон перхлорат, 1-бутил-3-метилимидазол гидросульфат), было проведено сравнение их влияния на реакцию. Строение синтезированного соединения проанализировано методами 1Н, 13С ЯМР и ИК-спектроскопии. Теоретические расчеты соединений были выполнены с использованием метода теории функционала плотности (DFT/B3LYP) с базисным набором 6-31G(d,p). Оптимизирована геометрия структуры, заданы длины связей, угловые степени, рассчитаны важные квантово-химические параметры, такие как ВЗМО, НСМО-орбитали, реакционная способность, стабильность, электрофильность, электроотрицательность, химическая мягкость, химическая жесткость. Установлено, что соединение обладает высокой стабильностью (∆E = 2,662 эВ) и высокой биологической активностью (ω = 5,670 эВ). Изучали действие образца в отношении Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, бактерий Bacillus anthracoides и гриба Candida albicans.

Ключевые слова: имидазол, синтез, микроволны, ионно-жидкие катализаторы, антимикробная активность, теоретические расчеты, стабильность.

 

ЛИТЕРАТУРА

  1. Verma, A. Imidazole: Having Versatile Biological Activities / A. Verma, S. Joshi, D. Singh // J. of chemistry. – 2013. – N 2. – P. 1–12.
  2.  Abbas, S. K. Ultrasound-assistance one-pot synthesis of 1,2,4,5-tetrasubstituted İmidazole derivatives and their in vitro anti-uroithiasis activities / S. K. Abbas, H. D. Hanoon, N. H. Al-Saadi // Chemical data collections. – 2023. – Vol. 46. – Art. 101053.
  3. An insight into the perspective of synthetic analogs of imidazole / S. Rulhania [et al.] // J. of molecular structure. – 2021. – Vol. 1232. – Art. 129982.
  4. Brahmbhatt, H. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents / H. Brahmbhatt, M. Molnar, V. Pavic // Karbala intern. j. of modern science. – 2018. – Vol. 4, N 2. – P. 200–206.
  5. Comprehensive review in current developments of imidazole-based medicinal chemistry / L. Zhang [et al.] // Medicinal research rev. – 2014. – Vol. 34, N 2. – P. 340–437.
  6. Tolomeu, H.V. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry / H. V. Tolomeu, C. A. M. Fraga // Molecules (Basel, Switzerland). – 2023. – Vol. 28, N 2. – P. 838. doi: 10.3390/molecules28020838
  7. Congiu, C.Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues / C. Congiu, M. T. Cocco, V. Onnis // Bioorganic & medicinal chem. letters. – 2008. – Vol. 18, N 3. – P. 989-993.
  8. Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists / Y. Yang [et al.] // Nature communications. – 2021. – Vol. 12, N 1. – P. 4351.
  9. Overview on Biological Activities of Imidazole Derivatives / R. Gujjarappa [et al.] // Nanostructured biomaterials / ed. B. P. Swain. –Singapore: Springer, 2022. – P. 135–220.
  10. Imidazole as a Promising Medicinal Scaffold. Current Status and Future Direction / S. S. Alghamdi [et al.] // Drug design, development and therapy. – 2021. – Vol. 15. – P. 3289–3312.
  11. Plant-growth regulator, imidazole-4-carboxamide, produced by the fairy ring forming fungus Lepista sordid / J. H. Choi [et al.] // J. of agr. and food chem. – 2010. – Vol. 58, N 18. – P. 9956–9959.
  12. A liquid phosphorus-containing imidazole derivative as flame-reterdant curing agent for epoxy resin with enhanced thermal latency mechanical and flame-retardant performances / S. Huo [et al.] // J. of hazardous materials. – 2020. – Vol. 386.
  13. Luminescent properties of some imidazole and oxazole based heterocycles: Synthesis, structure and substituent effects / A. O. Eseola [et al.] // Dyes and Pigments. – 2011. – Vol. 88, N 3. – P. 262–273.
  14. Tuning fluorescence properties of imidazole derivatives with thiophene and thiazole / K. Feng [et al.] // J. of Photochemistry and Photobiology A: Chemistry. – 2004. – Vol. 165, N 1/3. – P. 223–228.
  15. Novel synthesis of 2,4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazol[1,5-a]pyridine)picolinamidines: nitrogen-rich ligands / V. K. Fulwa [et al.] // Tetrahedron Letters. – 2009. – Vol. 50, N 46. – P. 6264– 6267.
  16. Kumar, D. Optical properties of pyrene and anthracene containing imidazoles: Experimental and theoretical investigations / D. Kumar, K. R. J. Thomas // J. of Photochemistry and Photobiology A: Chemistry. – 2011. – Vol. 218, N 1. – P. 162–173.
  17. Mammadov, A. M. Synthesis Of Imidazole-Based Complexes And Investigation Of Their Bactericidal Properties Against Srb / A. M. Mammadov // Processes of Petrochemistry and oil Refining. – 2021. – Vol. 22, N 4. – P. 537–545.
  18. İmidazoles as highly effective heterocyclic corrosion inhibitors for metals and alloys in aqueous electrolytes: A review / A. Mishra [et al.] // J. of the Taiwan Inst. of Chem. Engineers. – 2020. – Vol. 114. – P. 341–358.
  19. Effect of Imidazole as Corrosion Inhibitor on Carbon Steel Weldment in District Heating Water / S. J. Ko [et al.] // Materials (Basel, Switzerland). – 2021. – Vol. 14, N 16. – P. 4416.
  20. An insight into the medicinal perspective of synthetic analogs of imidazole / S. Rulhania [et al.] // J. of molecular structure. – 2021. – Vol. 1232. – Art. 129982.
  21. Üç və dördəvəzli imidazolların sintezi / A. Məmmədov [və s.] // Gənc tədqiqatçı. – 2020. – N 4. – S. 27–37.
  22. Synthesis and antimicrobial activity of allyl containing tetrasubstituted imidazoles / V. M. Abbasov [et al.] // PPOR. – 2018. – Vol. 19, N 3. – P. 344–349.
  23. Synthesis And Theoretical Calculations Of 4[4,5-Diphenyl-1-(4(Phenyldiazenyl)Phenyl)-1H-Imidazol-2-Yl]-Phenol / V. M. Abbasov [et al.] // PPOR. – 2024. – Vol. 25, N 1. – P. 89–97.
  24. Mammadov, A. M. Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles In The Presence Of 1,4 -Dimethylpiperaziniumdihydrosulfate Catalyst And Their Antimicrobial Activity / A. M. Mammadov // PPOR. – 2019. – Vol. 20, N 3. – P. 256–264.
  25. Synthesis and Study of Diphenyl and 4-(Phenyldiazenyl)Phenyl Based Tetrasubstituted İmidazoles in the Presence of İonic Liquid Catalysts / N. S. Orujova [et al.] // PPOR. – 2023. – Vol. 24, N 2. – P. 235–245.
  26. Synthesis of 2-aryl-1H-phenanthro[9,10-D]imidazole Derivatives in the Presence of Microwave or Ionic Type 1,4-Dimethylpiperaziniumdihydrosulfate Catalyst / A. M. Mammadov [et al.] // PPOR. – 2018. – Vol. 19, N 1. – P. 41–47.
  27. Synthesis of complexes of oleic acid with alkylamines and theoretical study of their structures / V. M. Abbasov [et al.] // PPOR. – 2023. – Vol. 24, N 4. – P. 831–842.
  28. Theoretical study on the molecular structure and vibrational properties, NBO and HOMO–LUMO analysis of the POX3 (X=F, Cl, Br, I) series of molecules / J. E. Galván [et al.] // J. of molecular structure. – 2015. – Vol. 1081. – P. 536–542.
  29. Neese, F. The ORCA program system / F. Neese // Wiley interdisciplinary reviews. Computational molecular science. – 2011. – Vol. 2, N 1. – P. 73–78.
  30. Vijayalakshmi, R. Evaluation of Chemical Reactivity and Stability of Ionic Liquids Using Ab Initio and COSMO-RS model / R. Vijayalakshmi, R. Anantharaj, A. B. Lakshmi // J. of computational chemistry. – 2020. – Vol. 41, N 9. – P. 885–912.
  31. DFT investıgatıon of transtion metals arene compounds wıth functionalized ionic liquid / N. Meriç [et al.] // Middle East j. of science. – 2022. – Vol. 8, N 1. – P. 16–25.

 

REFERENCES

  1. Verma A, Joshi S, Singh D. Imidazole: Having Versatile Biological Activities. J Chem. 2013;(2):1–12. doi: 10.1155/2013/329412
  2. Abbas SK, Hanoon HD, Al-Saadi NH. Ultrasound-assistance one-pot synthesis of 1,2,4,5-tetrasubstituted İmidazole derivatives and their in vitro anti-uroithiasis activities. Chemical Data Collections. 2023;46(Art 101053). doi: 10.1016/j.cdc.2023.101053
  3. Rulhania S, Kumar S, Nehra B, Gupta GD, Monga V. An insight into the perspective of synthetic analogs of imidazole. J Mol Struct. 2021;1232(Art 129982). doi: 10.1016/j.molstruc.2021.129982
  4. Brahmbhatt H, Molnar M, Pavic V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Intern J of Modern Science. 2018;4(2):200-6. doi: 10.1016/j.kijoms.2018.01.006
  5. Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Medicinal research rev. 2014;34(2):340–437. doi: 10.1002/med.21290
  6. Tolomeu HV, Fraga CAM. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules. 2023;28(2):838. doi: 10.3390/molecules28020838
  7. Congiu C, Cocco MT, Onnis V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg Med Chem Lett. 2008;18(3):989–93. doi: 10.1016/j.bmcl.2007.12.023
  8. Yang Y, Csakai A, Jiang S, Smith C, Tanji H, Huang J et al. Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nat Commun. 2021;12(1):4351. doi: 10.1038/s41467-021-24536-4
  9. Gujjarappa R, Kabi AK, Sravani S, Garg A, Vodnala N, Tyagi U et al. Overview on Biological Activities of Imidazole Derivatives. In: Swain BP, editor. Nanostructured Biomaterials. Singapore: Springer; 2022. p. 135–220
  10. Alghamdi SS, Suliman RS, Almutairi K, Kahtani K, Aljatli D. Imidazole as a Promising Medicinal Scaffold. Current Status and Future Direction. Drug Des Devel Ther. 2021;15:3289–312. doi: 10.2147/DDDT.S307113
  11. Choi JH, Abe N, Tanaka H, Fushimi K, Nishina Y, Morita A et al. Plant-growth regulator, imidazole-4-carboxamide, produced by the fairy ring forming fungus Lepista sordid. J Agric Food Chem. 2010;58(18):9956–9.  doi: 10.1021/jf101619a
  12. Huo S, Yang S, Wang J, Cheng J, Zhang Q, Hu Y et al. A liquid phosphorus-containing imidazole derivative as flame-reterdant curing agent for epoxy resin with enhanced thermal latency mechanical and flame-retardant performances. J Hazard Mater. 2020;386. doi: 10.1016/j.jhazmat.2019.121984
  13. Eseola AO,Li W, Sun WH, Zhang M, Xiao L, Woods JA. Luminescent properties of some imidazole and oxazole based heterocycles: Synthesis, structure and substituent effects. Dyes Pigm. 2011;88(3):262–73. doi: 10.1016/j.dyepig.2010.07.005
  14. Feng K, Hsu FL, DerVeer DV, Bota K, Bu X. Tuning fluorescence properties of imidazole derivatives with thiophene and thiazole. J Photochem Photobiol A Chem. 2004;165(1–3):223–8. doi: 10.1016/j.jphotochem.2004.03.021
  15. Fulwa VK, Sahu R, Jena HS, Manivannan V. Novel synthesis of 2,4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazol[1,5-a]pyridine)picolinamidines: nitrogen-rich ligands. Tetrahedron Lett. 2009;50(46):6264–7. doi: 10.1016/j.tetlet.2009.09.002
  16. Kumar D, Thomas KRJ. Optical properties of pyrene and anthracene containing imidazoles: Experimental and theoretical investigations. J Photochem Photobiol A Chem. 2011;218(1):162–73. doi: 10.1016/j.jphotochem.2010.12.018
  17. Mammadov AM. Synthesis Of Imidazole-Based Complexes And Investigation Of Their Bactericidal Properties Against Srb. Processes of Petrochemistry and oil Refining. 2021;22(4):537–45
  18. Mishra A, Aslam J, Verma C, Quraishi MA, Ebenso EE. İmidazoles as highly effective heterocyclic corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J Taiwan Inst Chem Eng. 2020;114:341–58. doi: 10.1016/j.jtice.2020.08.034
  19. Ko SJ, Choi SR, Hong MS, Kim WC, Kim JG. Effect of Imidazole as Corrosion Inhibitor on Carbon Steel Weldment in District Heating Water. Materials (Basel). 2021;14(16):4416. doi: 10.3390/ma14164416
  20. Rulhania S, Kumar S, Nehra B, Gupta GD, Monga V. An insight into the medicinal perspective of synthetic analogs of imidazole. J Mol Struct. 2021;1232(Art 129982). doi: 10.1016/j.molstruc.2021.129982
  21. Məmmədov A, Cəfərova R, Əliyev B, Məmmədova R, Orucova N. Üç və dördəvəzli imidazolların sintezi. Gənc tədqiqatçı. 2020;(4):27–37. (Azerbaijani)
  22. Abbasov VM, Abdullayev YA, Talybov AH, Akhmedova SZ. Synthesis and antimicrobial activity of allyl containing tetrasubstituted imidazoles. PPOR. 2018;19(3):344–9
  23. Abbasov VM, Orujova NS, Jafarova RA, Mammadov AM. Ahmadbeyova S. F. Synthesis And Theoretical Calculations Of 4[4,5-Diphenyl-1-(4(Phenyldiazenyl)Phenyl)-1H-Imidazol-2-Yl]-Phenol. PPOR. 2024;25(1):89–97. doi: 10.62972/1726-4685.2024.1.89
  24. Mammadov AM. Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles In The Presence Of 1,4 -Dimethylpiperaziniumdihydrosulfate Catalyst And Their Antimicrobial Activity. PPOR. 2019;20(3):256–64
  25. Orujova NS, Mammadov AM, Jafarova RA, Yolchuyeva UJ, Ahmadbayova SF. Synthesis and Study of Diphenyl and 4-(Phenyldiazenyl)Phenyl Based Tetrasubstituted İmidazoles in the Presence of İonic Liquid Catalysts. PPOR. 2023;24(2):235–45. doi: 10.36719/1726-4685/94/235-245
  26. Mammadov AM, Talybov AH, Jafarova RA, Aliyev BM, Azizbayli EI. Synthesis of 2-aryl-1H-phenanthro[9,10-D]imidazole Derivatives in the Presence of Microwave or Ionic Type 1,4-Dimethylpiperaziniumdihydrosulfate Catalyst. PPOR. 2018;19(1):41–7
  27. Abbasov VM, Alimadatli NY, Azizov RE, Aghamaliyeva DB, Mammadov AM. Synthesis of complexes of oleic acid with alkylamines and theoretical study of their structures. PPOR. 2023;24(4):831–42. doi: 10.36719/1726-4685/96/831-842
  28. Galván JE, Gil DM, Lanús HE, Altabef AB. Theoretical study on the molecular structure and vibrational properties, NBO and HOMO–LUMO analysis of the POX3 (X=F, Cl, Br, I) series of molecules. J Mol Struct. 2015;1081:536–42. doi:10.1016/j.molstruc.2014.10.060
  29. Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2011;2(1):73–8
  30. Vijayalakshmi R, Anantharaj R, Lakshmi AB. Evaluation of Chemical Reactivity and Stability of Ionic Liquids Using Ab Initio and COSMO-RS model. J Comput Chem. 2020;41(9):885–912. doi: 10.1002/jcc.26136
  31. Meriç N, Binbay NE, Binbay V, Kayan C, Aydemir M. DFT investıgatıon of transtion metals arene compounds wıth functionalized ionic liquid. Middle East J of Science. 2022;8(1):16–25. doi: 10.51477/mejs.1099084

 

Address for correspondence:

AZ1022, Azerbaijan,

Baku, st. Bakikhanova, 23,

Azerbaijan Medical University,

tel.: +994 51 313 81 77, +994 55 373 10 01,

e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.,

Kerimli E. H.

Поступила 20.06.2024 г.